
CSc 110, Autumn 2016
Lecture 22: Testing

Thanks to Atif Memon from UMD for disaster examples

Assertion example 2

def mystery():

prev = 0

count = 0

next = input()

Point A

while (next != 0):

Point B

if (next == prev):

Point C

count += 1

prev = next

next = input()

Point D

Point E

return count

next == 0 prev == 0 next == prev

Point A

Point B

Point C

Point D

Point E

SOMETIMES ALWAYS SOMETIMES

NEVER SOMETIMES SOMETIMES

NEVER NEVER ALWAYS

SOMETIMES NEVER SOMETIMES

ALWAYS SOMETIMES SOMETIMES

Which of the following assertions are
true at which point(s) in the code?
Choose ALWAYS, NEVER, or SOMETIMES.

Why talk about testing?

• Mars Climate Orbiter
• Purpose: to relay signals from the Mars Polar

Lander once it reached the surface of the
planet

• Disaster: smashed into the planet instead of
reaching a safe orbit

• Why: Software bug - failure to convert English
measures to metric values

Why talk about testing?

• THERAC-25 Radiation Therapy
• 1986: two cancer patients at the East Texas Cancer Center in Tyler received

fatal radiation overdose

• Why: Software bug - mishandled race condition (i.e., miscoordination
between concurrent tasks)

Why talk about testing?

• London Ambulance Service
• Purpose: automate many of the human-

intensive processes of manual dispatch
systems associated with ambulance
services in the UK – functions: Call taking

• Failure of the London Ambulance Service
on 26 and 27 November 1992
• Load increased, emergencies accumulated,

system made incorrect allocations

Industry comparison

• “If the automobile industry had developed like the software industry,
we would all be driving $25 cars that get 1,000 miles to the gallon.”

• “Yeah, and if cars were like software, they would crash twice a day for
no reason, and when you called for service, they’d tell you to reinstall
the engine.”

• Now days you can get a job as a software engineer developing cars!

Black box testing

• Testing the program does what the specification requires

• Tester has no access to the code
• Sometimes doesn't even need to know how to code

White box testing

• Examining code for potential problems

• Makes sure code meets specification

• Requires programming knowledge

Test driven development

• A software engineering philosophy

• Tests are written before the code is written

Types of testing

• Unit test: verifies correctness of a small piece of testable code in isolation

• Integration test: verifies different small already tested components of the
program work together correctly

• Regression testing: a complete retesting of a modified program

• Stress testing: tests the behavior under peak user volumes

• Performance, security, usability and many more

Black box testing example

Write a function named remove_bad_pairs that accepts as a parameter a list of integers, and
removes any adjacent pair of integers in the list if the left element of the pair is larger than the right
element of the pair. Every pair's left element is at an even-numbered index in the list, and every
pair's right element is at an odd index in the list. For example, suppose a variable named list
stores the following element values:

[3, 7, 9, 2, 5, 5, 8, 5, 6, 3, 4, 7, 3, 1]

We can think of this list as a sequence of pairs:

[3, 7, 9, 2, 5, 5, 8, 5, 6, 3, 4, 7, 3, 1]

The pairs 9-2, 8-5, 6-3, and 3-1 are "bad" because the left element is larger than the right one, so
these pairs should be removed. So the call of remove_bad_pairs(list) would change the
list to store:

[3, 7, 5, 5, 4, 7]

If the list has an odd length, the last element is not part of a pair and is also considered "bad;" it
should therefore be removed by your function.

If an empty list is passed in, the list should still be empty at the end of the call.

What are the invariants at the end of the
function?
• The list will have an even length

• For each pair the left element will be less or equal to the right

White box testing example

remove_bad_pairs(list):

if (len(list) % 2 != 0):

v.remove(list[-1])

i = 0

while(i < len(list)):

if (i % 2 != 0 and list[i - 1] > list[i]):

list.remove(i - 1)

list.remove(i)

What should you test?

• Focus on edge cases
• Don't just test 1, 2, 3, 4, 5, 6, etc – that won't tell you anything new

• Common edge cases
• 1, 0, -1

• Empty list

White box test a more complex problem

• Consider the following Internet Movie Database (IMDb) data:

1 9.1 196376 The Shawshank Redemption (1994)

2 9.0 139085 The Godfather: Part II (1974)

3 8.8 81507 Casablanca (1942)

• Write a program that displays any movies containing a phrase:

Search word? part

Rank Votes Rating Title

2 139085 9.0 The Godfather: Part II (1974)

40 129172 8.5 The Departed (2006)

95 20401 8.2 The Apartment (1960)

192 30587 8.0 Spartacus (1960)

4 matches.

