
CSc 110, Autumn 2016
Lecture 23: Tuples

Adapted from slides by Marty Stepp and Stuart Reges

Black box testing example

Write a function named remove_bad_pairs that accepts as a parameter a list of integers, and
removes any adjacent pair of integers in the list if the left element of the pair is larger than the right
element of the pair. Every pair's left element is at an even-numbered index in the list, and every
pair's right element is at an odd index in the list. For example, suppose a variable named list
stores the following element values:

[3, 7, 9, 2, 5, 5, 8, 5, 6, 3, 4, 7, 3, 1]

We can think of this list as a sequence of pairs:

[3, 7, 9, 2, 5, 5, 8, 5, 6, 3, 4, 7, 3, 1]

The pairs 9-2, 8-5, 6-3, and 3-1 are "bad" because the left element is larger than the right one, so
these pairs should be removed. So the call of remove_bad_pairs(list) would change the
list to store:

[3, 7, 5, 5, 4, 7]

If the list has an odd length, the last element is not part of a pair and is also considered "bad;" it
should therefore be removed by your function.

If an empty list is passed in, the list should still be empty at the end of the call.

What should you test?

• Focus on edge cases
• Don't just test 1, 2, 3, 4, 5, 6, etc – that won't tell you anything new

• Common edge cases
• 1, 0, -1

• Empty list

White box testing example

remove_bad_pairs(list):

if (len(list) % 2 != 0):

v.remove(list[-1])

i = 0

while(i < len(list)):

if (i % 2 != 0 and list[i - 1] > list[i]):

list.remove(i - 1)

list.remove(i)

A programming problem

• Given a file of cities' names and (x, y) coordinates:

Winslow 50 20

Tucson 90 60

Phoenix 10 72

Bisbee 74 98

Yuma 5 136

Page 150 91

• Write a program to draw the cities on a DrawingPanel, then simulates an earthquake that turns all
cities red that are within a given radius:

Epicenter x? 100
Epicenter y? 100
Affected radius? 75

A bad solution

lines = open("cities.txt").readlines()

names = [0] * len(lines)

x_coords = [0] * len(lines)

y_coords = [0] * len(lines)

for i in range(0, len(lines)):

parts = lines[i].split()

names[i] = parts[0]

x_coords[i] = parts[1] # read each city

y_coords[i] = parts[2]

...

• parallel lists: 2+ lists with related data at same indexes.
• Considered poor style.

Observations

• The data in this problem is a set of points.

• It would be better stored together

Tuples

• A sequence similar to a list but it cannot be altered

• Good for storing related data
• We mainly store the same type of data in a list

• We usually store related things in tuples

• Creating tuples

name = (data, other_data, … , last_data)

tuple = ("Tucson", 80, 90)

Using tuples

• You can access elements using [] notation, just like lists and strings
tuple = ("Tucson", 80, 90)

low = tuple[1]

• You cannot update a tuple!
• Tuples are immutable

• You can loop through tuples

the same as lists

operation call result

len() len((1, 2, 3)) 3

+ (1, 2, 3) +

(4, 5, 6)

(1, 2, 3, 4, 5, 6)

* ('Hi!',) * 4 ('Hi!', 'Hi!',

'Hi!', 'Hi!')

in 3 in (1, 2, 3) True

for for x in (1,2,3):

print x,

1 2 3

min() min((1, 3)) 1

max() max((1, 3)) 3

Days till

• Write a function called days_till that accepts a start month and
day and a stop month and day and returns the number of days
between them

call return

days_till("december", 1, "december", 10) 9

days_till("novembeR", 15, "december", 10) 25

days_till("OCTober", 6, "december", 17) 72

days_till("october", 6, "ocTober", 1) 360

Days till solution

def days_till(start_month, start_day, stop_month, stop_day):

months = (('january', 31),('february', 28),('march', 31),('april', 30), ('may', 31),('june', 30),

('july', 31), ('august', 31),('september', 30), ('october', 31), ('november', 30), ('december', 31))

if start_month.lower() == stop_month.lower() and stop_day >= start_day:

return stop_day - start_day

days = 0

for i in range(0, len(months)):

month = months[i]

if month[0] == start_month.lower():

days = month[1] - start_day

i += 1

while months[i % 12][0] != stop_month.lower():

days += months[i % 12][1]

i += 1

days += stop_day

return days

