
CSc 110, Autumn 2016
Lecture 29: Objects

Adapted from slides by Marty Stepp and Stuart Reges

Clients of objects

• client program: A program that uses objects.
• Example: shapes is a client of DrawingPanel.

shapes.py (client program)

def main():

DrawingPanel(...)

DrawingPanel(...)

...

main()

drawingpanel.py (class)

class DrawingPanel:

...

Classes and objects

• class: A program entity that represents either:
1. A program / module, or
2. A template for a new type of objects.

• The drawingpanel class is a template for creating DrawingPanel
objects.

• object: An entity that combines state and behavior.
• object-oriented programming (OOP): Programs that perform their behavior

as interactions between objects.

A programming problem

• Given a file of cities' names and (x, y) coordinates:

Winslow 50 20

Tucson 90 60

Phoenix 10 72

Bisbee 74 98

Yuma 5 136

Page 150 91

• Write a program to draw the cities on a DrawingPanel, then simulates an earthquake that turns all
cities red that are within a given radius:

Epicenter x? 100
Epicenter y? 100
Affected radius? 75

Observations

• The data in this problem is a set of points.

• It would be better stored together

Observations

• The data in this problem is a set of points.

• It would be better stored as Point objects.

• A Point would store a city's x/y data.

• We could compare distances between Points
to see whether the earthquake hit a given city.

• Each Point would know how to draw itself.

• The overall program would be shorter and cleaner.

Abstraction

• abstraction: A distancing between ideas and details.
• We can use objects without knowing how they work.

• abstraction in an iPod:
• You understand its external behavior (buttons, screen).

• You don't understand its inner details, and you don't need to.

Blueprint analogy
iPod blueprint

state:
current song
volume
battery life

behavior:
power on/off
change station/song
change volume
choose random song

iPod #1

state:
song = "1,000,000 Miles"
volume = 17
battery life = 2.5 hrs

behavior:
power on/off
change station/song
change volume
choose random song

iPod #2

state:
song = "Letting You"
volume = 9
battery life = 3.41 hrs

behavior:
power on/off
change station/song
change volume
choose random song

iPod #3

state:
song = "Discipline"
volume = 24
battery life = 1.8 hrs

behavior:
power on/off
change station/song
change volume
choose random song

creates

Our task

• In the following slides, we will implement a Point class as a way of
learning about defining classes.

• We will define a type of objects named Point.

• Each Point object will contain x/y data called fields.

• Each Point object will contain behavior called methods.

• Client programs will use the Point objects.

Point objects (desired)
p1 = Point(5, -2)

p2 = Point() # origin, (0, 0)

• Data in each Point object:

• Methods in each Point object:

Method name Description

setLocation(x, y) sets the point's x and y to the given values

translate(dx, dy) adjusts the point's x and y by the given amounts

distance(p) how far away the point is from point p

draw(g) displays the point on a drawing panel

Field name Description

x the point's x-coordinate

y the point's y-coordinate

Point class as blueprint

• The class (blueprint) will describe how to create objects.
• Each object will contain its own data and methods.

Point class

state:
int x, y

behavior:
set_location(int x, int y)

translate(int dx, int dy)

distance(Point p)

draw(Graphics g)

Point object #1

state:
x = 5, y = -2

behavior:
set_location(int x, int y)
translate(int dx, int dy)
distance(Point p)
draw(Graphics g)

Point object #2

state:
x = -245, y = 1897

behavior:
set_location(int x, int y)
translate(int dx, int dy)
distance(Point p)
draw(Graphics g)

Point object #3

state:
x = 18, y = 42

behavior:
set_location(int x, int y)
translate(int dx, int dy)
distance(Point p)
draw(Graphics g)

Fields

• field: A variable inside an object that is part of its state.
• Each object has its own copy of each field.

• Declaration syntax:

self.name = value

• Example:

class Student:

def __init__(self):

self.name = "" # each Student object has a

self.gpa = 0.0 # name and gpa field

Client code redundancy

• Suppose our client program wants to draw Point objects:

draw each city

p1 = Point()

p1.x = 15

p1.y = 37

p.canvas.create_oval(p1.x, p1.y, p1.x + 3, p2.x + 3);

p.canvas.create_string(p1.x, p1.y, "(" + str(p1.x) + ", " + str(p1.y) + ")")

• To draw other points, the same code must be repeated.

• We can remove this redundancy using a method.

Eliminating redundancy, v1

• We can eliminate the redundancy with a function:

Draws the given point on the DrawingPanel.

def draw(p, panel):

panel.canvas.create_oval(p1.x, p1.y, p1.x + 3, p2.x + 3);

panel.canvas.create_string(p1.x, p1.y, "(" + str(p1.x) + ", " + str(p1.y) + ")")

• main would call the method as follows:

draw(p1, panel)

Problems with function solution

• We are missing a major benefit of objects: code reuse.
• Every program that draws Points would need a draw function.

• The syntax doesn't match how we're used to using objects.

draw(p1, panel) # function (bad)

• The point of classes is to combine state and behavior.
• The draw behavior is closely related to a Point's data.

• The function belongs inside each Point object.

p1.draw(panel) # inside the object (better)

Instance methods

• method (or object function): Exists inside each object of a class and gives
behavior to each object.

def name(self, parameters):
statements

• same syntax as functions, but with an extra self parameter

Example:

def shout(self):

print("HELLO THERE!")

Instance method example

class Point:

def __init__(self):

self.x = 0

self.y = 0

Draws this Point object on the given panel
def draw(self, panel):

...

• The draw method no longer has a Point p parameter.

• How will the method know which point to draw?
• How will the method access that point's x/y data?

• Each Point object has its own copy of the draw method, which operates on that object's state:

p1 = Point()

p1.x = 7

p1.y = 2

p2 = Point()

p2.x = 4

p2.y = 3

p1.draw(panel)

p2.draw(panel)

def draw(self, panel):

this code can see p1's x and y

Point objects w/ method

x 7 y 2

x 4 y 3

def draw(self, panel):

this code can see p2's x and y

p2

p1

The implicit parameter

• implicit parameter:
The object on which an instance method is called.

• During the call p1.draw(panel)
the object referred to by p1 is the implicit parameter.

• During the call p2.draw(panel)
the object referred to by p2 is the implicit parameter.

• The instance method can refer to that object's fields.

• We say that it executes in the context of a particular object.

• draw can refer to the x and y of the object it was called on.

Point class, version 2

class Point:

def __init__(self):

self.x = 0

self.y = 0

Changes the location of this Point object.

def draw(self, panel):

panel.canvas.create_rectangle(x, y, x + 3, y + 3)

panel.canvas.create_string("(" + str(x) + ", " +

str(y) + ")", x, y)

• Each Point object contains a draw method that draws that point at its current x/y position.

Class method questions

• Write a method translate that changes a Point's location by a given
dx, dy amount.

• Write a method distance_from_origin that returns the distance
between a Point and the origin, (0, 0).

Use the formula:

• Modify the Point and client code to use these methods.

 212

2

12 yyxx

Class method answers

class Point:

def __init__(self):

self.x

self.y

def translate(self, dx, dy):

x = x + dx

y = y + dy

def distance_from_origin(self):

return sqrt(x * x + y * y)

