
CSc 110, Autumn 2016
Lecture 30: Methods

Adapted from slides by Marty Stepp and Stuart Reges

Why objects?

• Primitive types don't model complex concepts well
• Cost is a float. What's a person?

• Classes are a way to define new types

• Many objects can be made from those types

• Values of the same type often are used in similar ways
• Promote code reuse through methods

Initializing objects

• Currently it takes 3 lines to create a Point and initialize it:

p = Point()

p.x = 3

p.y = 8 # tedious

• We'd rather specify the fields' initial values at the start:

p = Point(3, 8) # desired; doesn't work (yet)

• We are able to this with most types of objects in Python.

Client code redundancy

• Suppose our client program wants to draw Point objects:

draw each city

p1 = Point()

p1.x = 15

p1.y = 37

panel.canvas.create_oval(p1.x, p1.y, p1.x + 3, p1.y + 3)

panel.canvas.create_string(p1.x, p1.y, "(" + p1.x + ", " + p1.y + ")")

• To draw other points, the same code must be repeated.

• We can remove this redundancy using a method.

Eliminating redundancy, v1

• We can eliminate the redundancy with a method:

Draws the given point on the DrawingPanel.

def draw(self, p, panel):

panel.canvas.create_oval(p.x, p.y, p.x + 3, p.y + 3)

panel.canvas.create_string("(" + str(p.x) + ", " + str(p.y) + ")", p.x, p.y)

• main would call the method as follows:

draw(p1, g)

Problems with function solution

• We are missing a major benefit of objects: code reuse.
• Every program that draws Points would need a draw method.

• The syntax doesn't match how we're used to using objects.

draw(p1, panel) # function (bad)

• The point of classes is to combine state and behavior.
• The draw behavior is closely related to a Point's data.

• The method belongs inside each Point object.

p1.draw(panel) # inside the object (better)

Instance methods

• method (or object function): Exists inside each object of a class and gives
behavior to each object.

def name(self, parameters):
statements

• same syntax as functions, but with a self parameter

Example:

def shout():
print("HELLO THERE!")

Point class, version 2

class Point:

def __init__(self):

self.x

self.y

Changes the location of this Point object.
def draw(self, panel):

panel.canvas.create_rectangle(x, y, x + 3, y + 3)
panel.canvas.create_string("(" + str(x) + ", " +

str(y) + ")", x, y)

• Each Point object contains a draw method that draws that point at its current
x/y position.

Class method questions

• Write a method translate that changes a Point's location by a given
dx, dy amount.

• Write a method distance_from_origin that returns the distance
between a Point and the origin, (0, 0).

Use the formula:

• Modify the Point and client code to use these methods.

   212

2

12 yyxx 

Class method answers

class Point:

def __init__(self, x, y):

self.x = x

self.y = y

def translate(self, dx, dy):

x = x + dx

y = y + dy

def distance_from_origin(self):

return sqrt(x * x + y * y)

def distance_from_origin(self):

this code can see p2's x and y

return sqrt(x * x + y * y)

• Each Point object has its own copy of the distance_from_origin method, which

operates on that object's state:

p1 = Point()

p1.x = 7

p1.y = 2

p2 = Point()

p2.x = 4

p2.y = 3

p1.distance_from_origin()

p2.distance_from_origin()

def distance_from_origin(self):

this code can see p1's x and y

return sqrt(x * x + y * y)

Point objects w/ method

x 7 y 2

x 4 y 3

p2

p1

Kinds of methods

• accessor: A method that lets clients examine object state.
• Examples: distance, distance_from_origin

• often returns something

• mutator: A method that modifies an object's state.
• Examples: set_location, translate

Printing objects

• By default, Python doesn't know how to print objects:

p = Point()

p.x = 10

p.y = 7

print("p is " + str(p)) # p is

<p.Point object at 0x000001BA6AE0BF28>

better, but cumbersome; p is (10, 7)

print("p is (" + str(p.x) + ", " + str(p.y) + ")")

desired behavior

print("p is " + str(p)) # p is (10, 7)

The __str__ method

tells Python how to convert an object into a string

p1 = Point(7, 2)

print("p1: " + str(p1))

• Every class has a __str__, even if it isn't in your code.

<point.Point object at 0x000001BA6AE0BF28>

__str__ syntax

def __str__(self):

code that returns a String representing this object

• Method name, return, and parameters must match exactly.

• Example:

Returns a String representing this Point.
def __str__(self):

return "(" + str(x) + ", " + str(y) + ")"

