CSc 110, Autumn 2016

Lecture 30: Methods
Adapted from slides by Marty Stepp and Stuart Reges

MAN, YOURE BEING IN(ONSISTENT
WITH YOUR ARRAY INDICES. SOME
ARE FROM ONE, SOME FRom ZERD,

DIFFERENT TASks CALL FOR WAIT WHAT?

DIFFERENT CONVENTIONS. TO '

QUOTE STANFORD ALGOR ITHMS WELL, THATS WHAT HE

EXPERT DONALD KNUTH, SAID WHEN | ASKED
Him ABOUT IT.

“WHO ARE You? How DID_
YOU GET IN MY HOUSE? j
/

Why objects?

* Primitive types don't model complex concepts well
* Costis afloat. What's a person?
* Classes are a way to define new types
* Many objects can be made from those types

* Values of the same type often are used in similar ways
* Promote code reuse through methods

Initializing objects

* Currently it takes 3 lines to create a Point and initialize it:

p = Point ()
p-x =3
p.y = 8 # tedious

* We'd rather specify the fields' initial values at the start:

p = Point (3, 8) # desired; doesn't work (yet)

* We are able to this with most types of objects in Python.

Client code redundancy

e Suppose our client program wants to draw Point objects:

draw each city
pl = Point ()

pl.x = 15

pl.y = 37

panel.canvas.create oval(pl.x, pl.y, pl.x + 3, pl.y + 3)
panel.canvas.create string(pl.x, pl.y, "(" + pl.x + ", " + pl.y + ")")

* To draw other points, the same code must be repeated.
* We can remove this redundancy using a method.

Eliminating redundancy, vl

* We can eliminate the redundancy with a method:

Draws the given point on the DrawingPanel.
def draw(self, p, panel):
panel.canvas.create oval(p.x, p.y, p.x + 3, p.y + 3)
panel.canvas.create string(" (" + str(p.x) + ", " + str(p.y) +")", pP.X, P.VY)

* main would call the method as follows:
draw (pl, g)

Problems with function solution

* We are missing a major benefit of objects: code reuse.
* Every program that draws Points would need a draw method.

* The syntax doesn't match how we're used to using objects.

draw (pl, panel) # function (bad)

* The point of classes is to combine state and behavior.
* The draw behavior is closely related to a Point's data.
* The method belongs inside each Point object.

pl.draw (panel) # inside the object (better)

Instance methods

 method (or object function): Exists inside each object of a class and gives
behavior to each object.

def name (self, parameters) :
statements

e same syntax as functions, but with a sel £ parameter

Example:

def shout () :
print ("HELLO THERE!™)

Point class, version 2

class Point:
def 1nit (self):
self.x
self.y

Changes the location of this Point object.

def draw(self, panel):
panel.canvas.create rectangle(x, y, x + 3, y + 3)
panel.canvas.create string(" (" + str(x) + ", " +

str(y) + ")", x, y)

* Each Point object contains a draw method that draws that point at its current
x/y position.

Class method questions

 Write a method translate that changes a Point's location by a given
dx, dy amount.

* Write a method distance from origin thatreturnsthe distance
between a Point and the origin, (O, 0).

Use the formula:

\/(Xz o X1)2 T (Y2 — 3’1)2

* Modify the Point and client code to use these methods.

Class method answers

class Point:
def init (self, x, y):

self.x X

self.y = vy

def translate(self, dx, dy):
X = x + dx
y =y + dy

def distance from origin(self):
return sqrt(x * x + y * y)

Point objects w/ method

* Each Point object has its own copy of the distance from origin method, which
operates on that object's state:

pl

pl = Point ()
pl.x =7 % 7 v 2
pl.y = 2

def distance from origin (self):
p2 = Point () # this code can see pl's x and y
p2.x = 4 return sgrt(x * x + y * vy)
p2.y = 3

pl.distance from origin()
p2.distance from origin() x| 4 |y| 3

2 def distance from origin (self):
P # this code can see p2's x and y

return sqgrt(x * x +y * y)

Kinds of methods

* accessor: A method that lets clients examine object state.
* Examples: distance,distance from origin
e often returns something

* mutator: A method that modifies an object's state.
* Examples: set location, translate

Printing objects

* By default, Python doesn't know how to print objects:

p = Point ()
p.x = 10
p.y = 7
print ("p is " + str(p)) # p is
<p.Point object at 0x000001BA6AEOBF28>
better, but cumbersome; p is (10, 7)
print("p j_S (" _|_ Str (p.X) _|_ ", LA + Str (p.y) _|_ ")")

desired behavior
print ("p is " + str(p)) # p is (10, 7)

The str method

tells Python how to convert an object into a string

pl = Point (7, 2)
print ("pl: " + str(pl))

* Everyclasshasa str ,evenifitisn'tinyour code.

<point.Point object at 0x000001BA6AEOBF28>

str syntax

def str (self) :

code that returns a String representing this object

* Method name, return, and parameters must match exactly.

* Example:

Returns a String representing this Point.
def str (self):
return " (" + str(x) + ", " + str(y) + ")"

