CSc 110, Autumn 2016

Lecture 31: Encapsulation
Adapted from slides by Marty Stepp and Stuart Reges

Abstraction

Don't need
to know —
this

AN x64 PROCESSDR 16 SLREAMING ALONG AT BLUONS OF
CYCLES PER SECOND To RUN THE XNU KERNEL, WHICH IS
FRANTICALLY WORKING THROUGH AL THE POSIX-SPECIFED
ABSTRACTION T0 CREATE THE DRRWIN SYSTEM UNDERIYING
05 X, WHICH INTORN 1S STRAINING ITSELF 0 RUN FIRERNX
AND ITS GECKO RENDERER, WHICH CREATES A RASH CBTECT
WHICH RENDERS [DZENS OF WDED FRANMES EVERY SECOND

O

BECABE I WANTED TO SEE A (AT
JUMP INTD A BOX AND FALL OVER.

T AM A GOD.

Can focus
on this!!

Encapsulation

e encapsulation: Hiding implementation details of an

object from its clients.

* Encapsulation provides abstraction.

* separates external view (behavior) from internal view (state)

* Encapsulation protects the integrity of an object's data.

S Re3

22K

b QUTRUT

ZN394

Here

Registor

Measure==jm
Voltage -ﬁ

Private fields

A field can be made invisible to outsiders
* No code outside the class can access or change it easily.

name

* Examples:

self. 1d
self. name

* Client code sees an error when accessing private fields:

Accessing private state

* We can provide methods to get and/or set a field's value:

A "read-only" access to the @ x field ("accessor")
def get x(self):
return self. x

Allows clients to change the x field ("mutator")
def set x(self, new x):
self. x = new X

* Client code will look more like this:

print ("pl: (" + str(pl.get x()) + ", " + str(pl.get y()) + ")")
pl.set _x(14)

Benefits of encapsulation

* Provides abstraction between an object and its clients.

* Protects an object from unwanted access by clients.
* A bank app forbids a client to change an Account's balance.

 Allows you to change the class implementation. (r.9)
* Point could be rewritten to use polar coordinates 9’"
(radius r, angle U), but with the same methods. -

* Allows you to constrain objects' state (invariants).
* Example: Only allow Points with non-negative coordinates.

Point class, version 4

A Point object represents an (x, y) location.
class Point:

self. x

self. vy

def init (self, initial x, initial y):
self. x = initial x

self. y = initial y

def distance from origin(self):
return sqgrt(self. x * self. x + self. y * self. V)

def get x(self):
return self. x

def get y(self):
return self. vy

def set location(self, new x, new y):
self. x = new X
self. y = new y

def translate(self, dx, dy):
self. x = self. x + dx
self. y = self. y + dy

Client code, version 4

def main9):
create two Point objects
pl Point (5, 2)
p2 Point (4, 3)

print each point
print ("pl: (" + str(pl.get x()) + ", " + str(pl.get y()) + ™)")
print ("p2: (" + str(p2.get x()) + ", " + str(p2.get_y()) + ")")

move p2 and then print it again
p2.translate (2, 4)
print ("p2: (" + str(p2.get x()) + ", " + str(p2.get_y()) + ")")

OUTPUT:

pl is (5, 2)
p2 1is (4, 3)
p2 is (6, 7)

