
CSc 110, Autumn 2016
Lecture 31: Encapsulation

Adapted from slides by Marty Stepp and Stuart Reges

Abstraction

Don't need
to know
this

Can focus
on this!!

Encapsulation

• encapsulation: Hiding implementation details of an

object from its clients.

• Encapsulation provides abstraction.

• separates external view (behavior) from internal view (state)

• Encapsulation protects the integrity of an object's data.

Private fields

• A field can be made invisible to outsiders
• No code outside the class can access or change it easily.

__name

• Examples:

self.__id

self.__name

• Client code sees an error when accessing private fields:

Accessing private state

• We can provide methods to get and/or set a field's value:
A "read-only" access to the __x field ("accessor")
def get_x(self):

return self.__x

Allows clients to change the __x field ("mutator")
def set_x(self, new_x):

self.__x = new_x

• Client code will look more like this:

print("p1: (" + str(p1.get_x()) + ", " + str(p1.get_y()) + ")")

p1.set_x(14)

Benefits of encapsulation

• Provides abstraction between an object and its clients.

• Protects an object from unwanted access by clients.
• A bank app forbids a client to change an Account's balance.

• Allows you to change the class implementation.
• Point could be rewritten to use polar coordinates

(radius r, angle θ), but with the same methods.

• Allows you to constrain objects' state (invariants).
• Example: Only allow Points with non-negative coordinates.

Point class, version 4

A Point object represents an (x, y) location.

class Point:

self.__x

self.__y

def __init__(self, initial_x, initial_y):

self.__x = initial_x

self.__y = initial_y

def distance_from_origin(self):

return sqrt(self.__x * self.__x + self.__y * self.__y)

def get_x(self):

return self.__x

def get_y(self):

return self.__y

def set_location(self, new_x, new_y):

self.__x = new_x

self.__y = new_y

def translate(self, dx, dy):

self.__x = self.__x + dx

self.__y = self.__y + dy

Client code, version 4

def main9):

create two Point objects

p1 = Point(5, 2)

p2 = Point(4, 3)

print each point

print("p1: (" + str(p1.get_x()) + ", " + str(p1.get_y()) + ")")

print("p2: (" + str(p2.get_x()) + ", " + str(p2.get_y()) + ")")

move p2 and then print it again

p2.translate(2, 4)

print("p2: (" + str(p2.get_x()) + ", " + str(p2.get_y()) + ")")

OUTPUT:

p1 is (5, 2)

p2 is (4, 3)

p2 is (6, 7)

