
CSc 110, Autumn 2016
Lecture 33: Inheritance

Adapted from slides by Marty Stepp and Stuart Reges

The software crisis

• software engineering: The practice of developing, designing, documenting,
testing large computer programs.

• Large-scale projects face many issues:
• programmers working together
• getting code finished on time
• avoiding redundant code
• finding and fixing bugs
• maintaining, reusing existing code

• code reuse: The practice of writing program code once and using it in many
contexts.

Law firm employee analogy

• common rules: hours, vacation, benefits, regulations ...
• all employees attend a common orientation to learn general company rules

• each employee receives a 20-page manual of common rules

• each subdivision also has specific rules:
• employee receives a smaller (1-3 page) manual of these rules

• smaller manual adds some new rules and also changes some rules from the
large manual

Separating behavior

• Why not just have a 22 page Lawyer manual, a 21-page Secretary
manual, a 23-page Marketer manual, etc.?

• Some advantages of the separate manuals:
• maintenance: Only one update if a common rule changes.

• locality: Quick discovery of all rules specific to lawyers.

• Some key ideas from this example:
• General rules are useful (the 20-page manual).

• Specific rules that may override general ones are also useful.

Is-a relationships, hierarchies

• is-a relationship: A hierarchical connection where one category can
be treated as a specialized version of another.
• every marketer is an employee

• every legal secretary is a secretary

• inheritance hierarchy: A set of classes connected by is-a relationships
that can share common code.

Employee regulations

• Consider the following employee regulations:

• Employees work 40 hours / week.

• Employees make $40,000 per year, except legal secretaries who make $5,000 extra per year ($45,000 total),

and marketers who make $10,000 extra per year ($50,000 total).

• Employees have 2 weeks of paid vacation leave per year, except lawyers who get an extra week (a total of 3).

• Employees should use a yellow form to apply for leave, except for lawyers who use a pink form.

• Each type of employee has some unique behavior:

• Lawyers know how to sue.

• Marketers know how to advertise.

• Secretaries know how to take dictation.

• Legal secretaries know how to prepare legal documents.

An Employee class

A class to represent employees in general (20-page manual).

class Employee:

def get_hours(self):

return 40 # works 40 hours / week

def get_salary(self):

return 40000.0 # $40,000.00 / year

def get_vacation_days(self):

return 10 # 2 weeks' paid vacation

def get_vacation_form(self):

return "yellow" # use the yellow form

• Exercise: Implement class Secretary, based on the previous employee
regulations. (Secretaries can take dictation.)

Redundant Secretary class

A redundant class to represent secretaries.

class Secretary:

def get_hours(self):

return 40 # works 40 hours / week

def get_salary(self):

return 40000.0 # $40,000.00 / year

defget_vacation_days(self):

return 10 # 2 weeks' paid vacation

def get_vacation_form(self):

return "yellow" # use the yellow form

def take_dictation(self, text):

print("Taking dictation of text: " + text)

Desire for code-sharing

• take_dictation is the only unique behavior in Secretary.

• We'd like to be able to say:

A class to represent secretaries.

class Secretary:

copy all the contents from the Employee class

def take_dictation(self, text):

print("Taking dictation of text: " + text)

Inheritance

• inheritance: A way to form new classes based on existing classes,
taking on their attributes/behavior.
• a way to group related classes

• a way to share code between two or more classes

• One class can extend another, absorbing its data/behavior.
• superclass: The parent class that is being extended.

• subclass: The child class that extends the superclass and inherits its behavior.
• Subclass gets a copy of every field and method from superclass

Inheritance syntax

class name(superclass):

• Example:

class Secretary(Employee):

...

• By extending Employee, each Secretary object now:
• receives a get_hours, get_salary, get_vacation_days, and
get_vacation_formmethod automatically

• can be treated as an Employee by client code (seen later)

Improved Secretary code

A class to represent secretaries.

class Secretary (Employee):

def take_dictation(self, text):

print("Taking dictation of text: " + text)

• Now we only write the parts unique to each type.
• Secretary inherits get_hours, get_salary,
get_vacation_days, and getVacationForm methods from
Employee.

• Secretary adds the take_dictation method.

Implementing Lawyer

• Consider the following lawyer regulations:
• Lawyers who get an extra week of paid vacation (a total of 3).

• Lawyers use a pink form when applying for vacation leave.

• Lawyers have some unique behavior: they know how to sue.

• Problem: We want lawyers to inherit most behavior from employee,
but we want to replace parts with new behavior.

Overriding methods

• override: To write a new version of a method in a subclass that replaces
the superclass's version.
• No special syntax required to override a superclass method.

Just write a new version of it in the subclass.

class Lawyer(Employee):

overrides get_vacation_form method in Employee class
def get_vacation_form():

return "pink"
...

• Exercise: Complete the Lawyer class.
• (3 weeks vacation, pink vacation form, can sue)

Lawyer class

A class to represent lawyers.

class Lawyer(Employee):

overrides get_vacation_form from Employee class

def get_vacation_form(self):

return "pink"

overrides get_vacation_days from Employee class

def get_vacation_days(self):

return 15 # 3 weeks vacation

def sue(self):

print("I'll see you in court!")

• Exercise: Complete the Marketer class. Marketers make $10,000 extra
($50,000 total) and know how to advertise.

Marketer class

A class to represent marketers.

class Marketer(Employee):

def advertise():

print("Act now while supplies last!")

def get_salary():

return 50000.0 # $50,000.00 / year

Levels of inheritance

• Multiple levels of inheritance in a hierarchy are allowed.
• Example: A legal secretary is the same as a regular secretary but makes more

money ($45,000) and can file legal briefs.

class LegalSecretary(Secretary):

...

• Exercise: Complete the LegalSecretary class.

LegalSecretary class

A class to represent legal secretaries.

class LegalSecretary(Secretary):

def file_legal_briefs(self):

print("I could file all day!")

def get_salary(self):

return 45000.0 # $45,000.00 / year

Calling overridden methods

• Subclasses can call overridden methods with super

super(ClassName, self).method(parameters)

• Example:

class LegalSecretary(Secretary):

def get_salary(self):

base_salary = super(LegalSecretary, self).get_salary()

return base_salary + 5000.0

...

Inheritance and constructors

• Imagine that we want to give employees more vacation days the
longer they've been with the company.
• For each year worked, we'll award 2 additional vacation days.

• When an Employee object is constructed, we'll pass in the number of years
the person has been with the company.

• This will require us to modify our Employee class and add some new state
and behavior.

• Exercise: Make necessary modifications to the Employee class.

Modified Employee class

class Employee:

def __init__(self, initial_years):

self.__years = initial_years

def get_hours(self):

return 40

def get_salary(self):

return 50000.0

def get_vacation_days(self):

return 10 + 2 * self.__years

def get_vacation_form(self):

return "yellow"

Problem with constructors

• Now that we've added the constructor to the Employee class, our
subclasses do not compile. The error:

TypeError: __init__() missing 1 required positional
argument: 'initial_years'

• The short explanation: Once we write a constructor (that requires
parameters) in the superclass, we must now write constructors for our
employee subclasses as well.

Modified Marketer class

A class to represent marketers.

class Marketer(Employee):

def __init__(years):

super(Marketer, self).__init__(years)

def advertise():

selfprint("Act now while supplies last!")

def get_salary():

return super(Marketer, self).get_salary() + 10000.0

• Exercise: Modify the Secretary subclass.
• Secretaries' years of employment are not tracked.
• They do not earn extra vacation for years worked.

Modified Secretary class

A class to represent secretaries.

class Secretary(Employee):

def __init__(self):

super(Secretary, self).__init__(0)

def take_dictation(self, text):

print("Taking dictation of text: " + text)

• Since Secretary doesn't require any parameters to its constructor,

LegalSecretary compiles without a constructor.

• Its default constructor calls the Secretary constructor.

Inheritance and fields

• Try to give lawyers $5000 for each year at the company:
class Lawyer(Employee):

...
def get_salary(self):

return super(Lawyer, self).get_salary() + 5000 * years
...

• Does not work; the error is the following:
AttributeError: 'Lawyer' object has no attribute '_Employee__years'
^

• Private fields cannot be directly accessed from subclasses.
• One reason: So that subclassing can't break encapsulation.
• How can we get around this limitation?

Improved Employee code

Add an accessor for any field needed by the subclass.

class Employee:

self.__years

def __init__(self, initial_years):

self.__years = initial_years

def get_years(self):

return self.__years

...

class Lawyer(Employee):

def __init__(self, years):

super(Lawyer, self).__init__(years)

def get_salary(self):

return super(Lawyer, self).get_salary() + 5000 * get_years()

...

Revisiting Secretary

• The Secretary class currently has a poor solution.
• We set all Secretaries to 0 years because they do not get a vacation bonus for

their service.

• If we call get_years on a Secretary object, we'll always get 0.

• This isn't a good solution; what if we wanted to give some other reward to all
employees based on years of service?

• Redesign our Employee class to allow for a better solution.

Improved Employee code

• Let's separate the standard 10 vacation days from those that are
awarded based on seniority.

class Employee:

def __init__(self, initial_years):

self.__years = initial_years

def get_vacation_days(self):

return 10 + self.get_seniority_bonus()

vacation days given for each year in the company
def get_seniority_bonus(self):

return 2 * self.__years
...

• How does this help us improve the Secretary?

Improved Secretary code

• Secretary can selectively override get_seniority_bonus;
when get_vacation_days runs, it will use the new version.
• Choosing a method at runtime is called dynamic binding.

class Secretary(Employee):

def __init__(self, years):

super(Secretary, self).__init__(years)

Secretaries don't get a bonus for their years of service.

def get_seniority_bonus(self):

return 0

def take_dictation(self, text):

print("Taking dictation of text: " + text)

