
CSc 110, Autumn 2016
Lecture 33: Inheritance

Adapted from slides by Marty Stepp and Stuart Reges

Calling overridden methods

• Subclasses can call overridden methods with super

super(ClassName, self).method(parameters)

• Example:

class LegalSecretary(Secretary):

def get_salary(self):

base_salary = super(LegalSecretary, self).get_salary()

return base_salary + 5000.0

...

Inheritance and constructors

• Imagine that we want to give employees more vacation days the
longer they've been with the company.
• For each year worked, we'll award 2 additional vacation days.

• When an Employee object is constructed, we'll pass in the number of years
the person has been with the company.

• This will require us to modify our Employee class and add some new state
and behavior.

• Exercise: Make necessary modifications to the Employee class.

Modified Employee class

class Employee:

def __init__(self, initial_years):

self.__years = initial_years

def get_hours(self):

return 40

def get_salary(self):

return 50000.0

def get_vacation_days(self):

return 10 + 2 * self.__years

def get_vacation_form(self):

return "yellow"

Problem with constructors

• Now that we've added the constructor to the Employee class, our
subclasses do not compile. The error:

TypeError: __init__() missing 1 required positional
argument: 'initial_years'

• The short explanation: Once we write a constructor (that requires
parameters) in the superclass, we must now write constructors for our
employee subclasses as well.

Modified Marketer class

A class to represent marketers.

class Marketer(Employee):

def __init__(years):

super(Marketer, self).__init__(years)

def advertise():

print("Act now while supplies last!")

def get_salary():

return super(Marketer, self).get_salary() + 10000.0

• Exercise: Modify the Secretary subclass.
• Secretaries' years of employment are not tracked.
• They do not earn extra vacation for years worked.

Modified Secretary class

A class to represent secretaries.

class Secretary(Employee):

def __init__(self):

super(Secretary, self).__init__(0)

def take_dictation(self, text):

print("Taking dictation of text: " + text)

• Since Secretary doesn't require any parameters to its constructor,

LegalSecretary runs fine without a constructor.

Inheritance and fields

• Try to give lawyers $5000 for each year at the company:
class Lawyer(Employee):

...
def get_salary(self):

return super(Lawyer, self).get_salary() + 5000 * self.__years
...

• Does not work; the error is the following:
AttributeError: 'Lawyer' object has no attribute '_Employee__years'
^

• Private fields cannot be directly accessed from subclasses.
• One reason: So that subclassing can't break encapsulation.
• How can we get around this limitation?

Improved Employee code

Add an accessor for any field needed by the subclass.

class Employee:

self.__years

def __init__(self, initial_years):

self.__years = initial_years

def get_years(self):

return self.__years

...

class Lawyer(Employee):

def __init__(self, years):

super(Lawyer, self).__init__(years)

def get_salary(self):

return super(Lawyer, self).get_salary() + 5000 * get_years()

...

Revisiting Secretary

• The Secretary class currently has a poor solution.
• We set all Secretaries to 0 years because they do not get a vacation bonus for

their service.

• If we call get_years on a Secretary object, we'll always get 0.

• This isn't a good solution; what if we wanted to give some other reward to all
employees based on years of service?

• Redesign our Employee class to allow for a better solution.

Improved Employee code

• Let's separate the standard 10 vacation days from those that are
awarded based on seniority.

class Employee:

def __init__(self, initial_years):

self.__years = initial_years

def get_vacation_days(self):

return 10 + self.get_seniority_bonus()

vacation days given for each year in the company
def get_seniority_bonus(self):

return 2 * self.__years
...

• How does this help us improve the Secretary?

Improved Secretary code

• Secretary can selectively override get_seniority_bonus;
when get_vacation_days runs, it will use the new version.
• Choosing a method at runtime is called dynamic binding.

class Secretary(Employee):

def __init__(self, years):

super(Secretary, self).__init__(years)

Secretaries don't get a bonus for their years of service.

def get_seniority_bonus(self):

return 0

def take_dictation(self, text):

print("Taking dictation of text: " + text)

Critter exercise: Anteater

• Write a critter class Anteater:

Method Behavior

__init__

eat Eats 3 pieces of food and then stops

fight randomly chooses between pouncing and roaring

get_color pink if hungry and red if full

get_move walks up two and then down two

__str__ "a" if hungry "A" otherwise

