
CSc 110, Autumn 2016
Lecture 35: List Comprehensions

List comprehensions

• A compact syntax that can replace loops that alter lists
• Applies the expression to each element in the list

• You can have 0 or more for or if statements

[expression for element in list]

List comprehensions

vec = [2, 4, 6]

result = [3 * x for x in vec]

print(result) # [6, 12, 18]

result2 = [3 * x for x in vec if x > 3]

print(result2) # [12, 18]

result3 = [3 * x for x in vec if x < 2]

print(result3) # []

Notice the
contents of vec
do not change

List comprehensions

vec = [2, 4, 6]

result = [[x, x ** 2] for x in vec]

print(result) # [[2, 4], [4, 16], [6, 36]]

result2 = [(x, x ** 2) for x in vec]

print(result2) # [(2, 4), (4, 16), (6, 36)]

More than one element can be generated from each element in the
original list

Exercise

• Given a list a words in any casing, create a new list containing the
words with the first letter capitalized and the rest lowercase.

[word[0].upper() + word[1:].lower() for word in words]

List comprehensions

vec = [2, 3, 4, 5, 6]

result = [x for x in vec if x % 2 == 0]

print(result) # [2, 4, 6]

result2 = [x ** 2 for x in vec if x % 2 == 0 and x < 5]

print(result2) # [4, 16]

An if statement can be added to the end to allow selecting only certain
elements of the original list

[expression for element in list if condition]

Exercise

• Create a list with all words from an original text list that are over 3
letters long

[word for word in text if len(word) > 3]

Exercise

• Count occurrences of "money" in an email text

• We counted word occurrences earlier this semester using loops

• Word counts can help us do things like identify spam emails

len([1 for word in email if word == 'money'])

Exercise

• Extend the solution to the last problem to count occurrences of any
word that occurs in a list called spam_words

len([1 for word in email if word in spam_words])

Exercise

• Create a list that’s contents simulates a series of 10 coin tosses
(generate a 1 to represent heads, 0 for tails)

[randint(0, 1) for i in range(0, 10)]

Nested List Comprehension

• You can write a list comprehension to go over a list of lists

matrix = [[0,1,2,3], [4,5,6,7], [8,9,10,11]]

flattened = [i for row in matrix for i in row]

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

Set Comprehension

• Set comprehensions work just like list comprehensions except that
they are surrounded by {}

vec = [2, 4, 6]

result = {3 * x for x in vec}

print(result) # {6, 12, 18}

vec2 = [2, 4, 6, 2, 2, 4, 3]

result2 = {3 * x for x in vec2}

print(result2) # {6, 12, 18, 9}

Dictionary Comprehension

• Dictionary comprehensions work similarly to list and set comprehensions
except that they are surrounded by {} and generate key, value pairs

original = {'two' : 2, 'four' : 4, 'six' : 6}

{value: key for key, value in original.items()}

What does this comprehension do?

