
Lecture 36: searching

CSc 110, Autumn 2016

Sequential search

sequential search: Locates a target value in a list by examining each
element from start to finish. Used in index.

 How many elements will it need to examine?

 Example: Searching the list below for the value 42:

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

i

Sequential search

How many elements will be checked?

def index(value):
for i in range(0, size):

if (my_list[i] == value):
return i

return -1 # not found

On average how many elements will be checked?

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

Binary search

binary search: Locates a target value in a sorted list by successively
eliminating half of the list from consideration.

 How many elements will it need to examine?

 Example: Searching the list below for the value 42:

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

min mid max

Binary search runtime

• For an list of size N, it eliminates ½ until 1 element remains.
N, N/2, N/4, N/8, ..., 4, 2, 1

• How many divisions does it take?

• Think of it from the other direction:
• How many times do I have to multiply by 2 to reach N?

1, 2, 4, 8, ..., N/4, N/2, N
• Call this number of multiplications "x".

2x= N
x = log2 N

• Binary search looks at a logarithmic number of elements

bisect

from bisect import *

searches an entire sorted list for a given value

returns the index the value should be inserted at to maintain sorted order

Precondition: list is sorted

bisect(list, value)

searches given portion of a sorted list for a given value

examines min_index (inclusive) through max_index (exclusive)

returns the index the value should be inserted at to maintain sorted order

Precondition: list is sorted

bisect(list, value, min_index, max_index)

Using bisect

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a = {-4, 2, 7, 9, 15, 19, 25, 28, 30, 36, 42, 50, 56, 68, 85, 92}

index1 = bisect(a, 42, 0, 16) # index1 is 11

index2 = bisect(a, 21, 0, 16) # index2 is 6

bisect returns the index where the value could be
inserted while maintaining sorted order

 if the value is already in the list the next index is returned

Binary search code

Returns the index of an occurrence of target in a,

or a negative number if the target is not found.

Precondition: elements of a are in sorted order

def binary_search(a, target):

min = 0

max = len(a) - 1

while (min <= max):

mid = (min + max) // 2

if (a[mid] < target):

min = mid + 1

elif (a[mid] > target):

max = mid - 1

else:

return mid # target found

return -(min + 1) # target not found

