
CSc 110, Autumn 2016
Lecture 37: Sorting

Adapted from slides by Marty Stepp and Stuart Reges

Binary search

• Write a function that searches an entire sorted list for a given value
and returns the index the value is at, or if it isn't in the list the index it
should be inserted at plus one negated. You can assume the list is
sorted.

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 12 18 25 27 30 36 42 56 68 85 91 92 98 102

Binary search code

Returns the index of an occurrence of target in a,

or a negative number if the target is not found.

Precondition: elements of a are in sorted order

def binary_search(a, target):

min = 0

max = len(a) - 1

while (min <= max):

mid = (min + max) // 2

if (a[mid] < target):

min = mid + 1

elif (a[mid] > target):

max = mid - 1

else:

return mid # target found

return -(min + 1) # target not found

Binary search

What do the following calls return when passed the above list?

binary_search(a, 2)

binary_search(a, 68)

binary_search(a, 12)

How many comparisons does each call do?

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 12 18 25 27 30 36 42 56 68 85 91 92 98 102

Sorting

• sorting: Rearranging the values in a list into a specific order
(usually into their "natural ordering").

• one of the fundamental problems in computer science
• can be solved in many ways:

• there are many sorting algorithms

• some are faster/slower than others

• some use more/less memory than others

• some work better with specific kinds of data

• some can utilize multiple computers / processors, ...

• comparison-based sorting : determining order by
comparing pairs of elements:
• <, >, …

Bogo sort

• bogo sort: Orders a list of values by repetitively shuffling them
and checking if they are sorted.
• name comes from the word "bogus"

The algorithm:

• Scan the list, seeing if it is sorted. If so, stop.

• Else, shuffle the values in the list and repeat.

• This sorting algorithm (obviously) has terrible performance!

Bogo sort code

Places the elements of a into sorted order.

def bogo_sort(a):

while (not is_sorted(a)):

shuffle(a)

Returns true if a's elements

#are in sorted order.

def is_sorted(a):

for i in range(0, len(a) - 1):

if (a[i] > a[i + 1]):

return False

return True

Swaps a[i] with a[j].

def swap(a, i, j):

if (i != j):

temp = a[i]

a[i] = a[j]

a[j] = temp

Shuffles a list by randomly swapping each

element with an element ahead of it in the list.

def shuffle(a):

for i in range(0, len(a) - 1):

pick a random index in [i+1, a.length-1]

range = len(a) - 1 - (i + 1) + 1

j = (random() * range + (i + 1))

swap(a, i, j)

Selection sort

• selection sort: Orders a list of values by repeatedly putting
the smallest or largest unplaced value into its final position.

The algorithm:

• Look through the list to find the smallest value.

• Swap it so that it is at index 0.

• Look through the list to find the second-smallest value.

• Swap it so that it is at index 1.

...

• Repeat until all values are in their proper places.

Selection sort example
• Initial list:

• After 1st, 2nd, and 3rd passes:

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value 22 18 12 -4 27 30 36 50 7 68 91 56 2 85 42 98 25

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 18 12 22 27 30 36 50 7 68 91 56 2 85 42 98 25

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 12 22 27 30 36 50 7 68 91 56 18 85 42 98 25

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 22 27 30 36 50 12 68 91 56 18 85 42 98 25

Selection sort code

Rearranges the elements of a into sorted order using

the selection sort algorithm.

def selection_sort(a):

for i in range(0, len(a) - 1):

find index of smallest remaining value

min = i

for j in range(i + 1, len(a)):

if (a[j] < a[min]):

min = j

swap smallest value its proper place, a[i]

swap(a, i, min)

Selection sort runtime (Fig. 13.6)

• How many comparisons does selection sort have to do?

Similar algorithms

bubble sort: Make repeated passes, swapping adjacent values
 slower than selection sort (has to do more swaps)

insertion sort: Shift each element into a sorted sub-list
 faster than selection sort (examines fewer values)

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value 22 18 12 -4 27 30 36 50 7 68 91 56 2 85 42 98 25

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value 18 12 -4 22 27 30 36 7 50 68 56 2 85 42 91 25 98

22 50 91 98

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 12 18 22 27 30 36 50 7 68 91 56 2 85 42 98 25

7
sorted sub-list (indexes 0-7)

Merge sort

• merge sort: Repeatedly divides the data in half, sorts each
half, and combines the sorted halves into a sorted whole.

The algorithm:
• Divide the list into two roughly equal halves.
• Sort the left half.
• Sort the right half.
• Merge the two sorted halves into one sorted list.

• Often implemented recursively.
• An example of a "divide and conquer" algorithm.

• Invented by John von Neumann in 1945

Merge sort example
index 0 1 2 3 4 5 6 7

value 22 18 12 -4 58 7 31 42

22 18 12 -4

22 18

22 18

18 22

merge

split
12 -4

12 -4

-4 12

merge

split

split

-4 12 18 22

58 7 31 42

58 7

58 7

7 58

merge

split
31 42

31 42

31 42

merge

split

split

7 31 42 58

-4 7 12 18 22 31 42 58

split

merge merge

merge

Merge halves code

Merges the left/right elements into a sorted result.

Precondition: left/right are sorted

def merge(result, left, right):

i1 = 0 # index into left list

i2 = 0 # index into right list

for i in range(0, len(result)):

if (i2 >= len(right) or (i1 < len(left) and left[i1] <=
right[i2])):

result[i] = left[i1] # take from left

i1 += 1

else:

result[i] = right[i2] # take from right

i2 += 1

Merge sort code

Rearranges the elements of a into sorted order using

the merge sort algorithm.

def merge_sort(a):

if (len(a) >= 2):

split list into two halves

left = a[0, len(a)//2]

right = a[len(a)//2, len(a)]

sort the two halves

merge_sort(left)

merge_sort(right)

merge the sorted halves into a sorted whole

merge(a, left, right)

Merge sort runtime
• How many comparisons does merge sort have to do?

