
1 of 8

CSc 110 Sample Final Exam #2

1. While Loop Simulation

For each call of the method below, write the value that is returned:

def mystery(i, j):

 k = 0

 while (i > j):

 i = i - j

 k = k + (i - 1)

 return k

Function Call Value Returned

mystery(2, 9) _______________________________

mystery(5, 1) _______________________________

mystery(38, 5) _______________________________

mystery(5, 5) _______________________________

mystery(40, 10) _______________________________

2. Inheritance Mystery
Assume that the following classes have been defined:

class Pen(Sock):

 def method1(self):

 print("pen 1 ", end='')

class Lamp:

 def method1(self):

 print("lamp 1 ", end='')

 method2(self):

 print("lamp 2 ", end='')

 def __str__(self):

 return "lamp"

class Book(Sock):

 def method2(self):

 print("book 2 ", end='')

 super(Book, self).method2()

class Sock(Lamp):

 def method1(self):

 print("sock 1 ", end='')

 self.method2()

 def __str__(self):

 return "sock"

 Given the classes above, what output is produced by the following code?

elements = [Book(), Pen(), Lamp(), Sock()]

for i in range(0, len(elements)):

 print(elements[i])

 elements[i].method1()

 print()

 elements[i].method2()

 print()

 print()

2 of 8

3. Dictionary/Set Mystery

 Consider the following method:
 def mystery(list1, list2):
 result = {}

 for i in range(0, len(list1)):

 result[list1[i]] = list2[i]

 result[list2[i]] = list1[i]

 return result

 The three entries below specify values for the first and second parameters to method mystery. For each

entry, indicate what values would be stored in the dictionary returned by function mystery if the given lists

are passed as parameters. Dictionary elements should be listed with "key:value" elements, as in {'b' : 'z',

'd' : 'b'}.

 list1: ['b', 'l', 'u', 'e'] list2: ['s', 'p', 'o', 't']

 dictionary returned:__

 list1: ['k', 'e', 'e', 'p'] list2: ['s', 'a', 'f', 'e']

 dictionary returned:__

 list1: ['s', 'o', 'b', 'e', 'r'] list2: ['b', 'o', 'o', 'k', 's']

 dictionary returned:__

4. Dictionary/Set Programming.

 Write a function union(m1,m2) that accepts two dictionaries (whose keys and values are both integers) as

parameters, and returns a new dictionary that represents a merged union of the two original dictionaries.

The "union" of two dictionaries m1 and m2 is a new dictionary that contains every key from m1 and every

key from m2. Each value stored in your "union" dictionary should be the sum of the corresponding value(s)

for that key in m1 and m2. If the key exists in only one of the two dictionaries, that dictionary's

corresponding value should be used.

 For example, consider the dictionaries m1 and m2 with the following key/value pairs:

 m1 is {7:1, 18:5, 42:3, 76:10, 98:2, 234:50}

 m2 is {7:2, 11:9, 42:-12, 98:4, 234:0, 9999:3}

The call of union(m1, m2) should return a dictionary that contains the following key/value pairs:

{7:3, 11:9, 18:5, 42:-9, 76:10, 98:6, 234:50, 9999:3}

The key 98 exists in both dictionaries, so the new dictionary contains the sum of its values from the two

dictionaries, (2 + 4 = 6). The key 9999 exists in only one of the two dictionaries, so its sole value of 3 is

stored as its value in the resulting dictionary.

 (Problem 4. description continues on next page.)

3 of 8

Either dictionary passed in (or both) could be empty. Though the pairs are shown in sorted order by key

above, you should not assume that the dictionaries passed to you store their keys in sorted order.

You may create one collection (list, dictionary, set) of your choice as auxiliary storage to solve this problem.

You can have as many simple variables as you like. You should not modify the contents of the dictionaries

passed to your function.

5. String Programming

 Write a function called encode that takes a string s and an integer n as parameters and that returns a new string that

scrambles the order of the characters from s in a particular way. Taking the characters from s in order, imagine

filling a grid of n rows column by column. When s is "abcdefghijklmnopqrstuvwxyz" and n is 3, you get:

 row 1: a d g j m p s v y

 row 2: b e h k n q t w z

 row 3: c f i l o r u x

 The function should return the result of concatenating these characters together with row 1 first, then row 2, and then

row 3. Notice that the final row will not necessarily be complete, as in the example above where the final row has

two fewer characters. Consider the following call to encode:

 encode("abcdefghijklmnopqrstuvwxyz", 3)

 The resulting string should be "adgjmpsvybehknqtwzcfilorux". The string parameter might contain any

 characters, including spaces. For example, the call:

 encode("four score and seven", 4)

 returns "f rneosedvuc eroasn" because the following grid would be produced:

 row 1: f r n e

 row 2: o s e d v

 row 3: u c e

 row 4: r o a s n

 You may assume that the string passed as a parameter is not empty and that the integer passed as a parameter is

greater than or equal to 1 and less than the length of the string. You are not allowed to construct any structured

objects other than strings to solve this problem (that is, no list, list of lists, etc).

6. List of Lists Programming

Write a function called num_unique that takes a list of lists as a parameter and returns the number of unique values

stored in it. For example, if you have the following list of lists:

 lis = [[1, 2, 3], [4, 3, 2, 1], [6, 7, 7], [8]]

 a call to num_unique(lis) should return 7. You may create one other data structure to help you solve this problem.

4 of 8

7. List Programming

Write a function named longest_sorted_sequence that accepts a list of integers as a parameter and that returns

the length of the longest sorted (nondecreasing) sequence of integers in the list. For example, consider a variable

named lis set to the following values:

 lis = [3, 8, 10, 1, 9, 14, -3, 0, 14, 207, 56, 98, 12]

 Then the call of longest_sorted_sequence(lis) should return 4 because the longest sorted sequence in the list

has four values in it (the sequence -3, 0, 14, 207). Notice that sorted means nondecreasing, which means that the

sequence could contain duplicates. For example, consider a variable named lis2 set to the following values:

 lis2 = [17, 42, 3, 5, 5, 5, 8, 2, 4, 6, 1, 19]

 Then the function would return 5 for the length of the longest sequence (the sequence 3, 5, 5, 5, 8). Your function

should return 0 if passed an empty list. Your function should return 1 if passed a list that is entirely in decreasing

order or contains only one element.

8. Critters

Write a class Bumblebee that extends the Critter class from the Critters assignment.

A Bumblebee object should move in a "spiral" pattern from W to S to E to N, lengthening each time:

 one step west

 two steps south

 three steps east

 four steps north

 five steps west

 six steps south

 seven steps east

 eight steps north

 nine steps west

...

All other Bumblebee behavior uses the Critter defaults. You may add anything needed, such as instance variables

(attributes) or additional methods, to implement this behavior appropriately.

5 of 8

9. Classes and Objects

 Suppose that you are provided with a pre-written class Rectangle

as described at right. (The headings are shown, but not the method

bodies, to save space.) Assume that the attributes, constructor, and

methods shown are already implemented. You may refer to them or

use them in solving this problem if necessary.

 Write a method named union that will be placed inside the

Rectangle class to become a part of each Rectangle object's

behavior. The union method accepts another rectangle r as a

parameter and turns this rectangle into the union of itself and r ; that

is, modifies the attributes so that they represent the smallest

rectangular region that completely contains both this rectangle and r.

 For example, if the following Rectangle objects are created as in

the code below:

rect1 = Rectangle(5, 12, 4, 6)

rect2 = Rectangle(6, 8, 5, 7)

rect3 = Rectangle(14, 9, 3, 3)

rect4 = Rectangle(10, 3, 5, 8)

 Then the following calls to the union method would modify the

objects' state as indicated in the comments.

rect1.union(rect2) # {(5, 8), 6x10}
rect4.union(rect3) # {(10, 3), 7x9}

A Rectangle stores an (x, y)

coordinate of its top/left
corner, a width and height.

class Rectangle:

 # Constructs a new Rectangle

 # with the given x,y,w,h.
 def __init__(self, x, y, w, h:
 self.__x = x

 self.__y = y
 self.__width = w
 self.__height = h

 # returns the attribute values

def getx(self):

 return self.__x

def gety(self):
 return self.__y

def get_width(self):
 return self.__width
def get_height(self):

 return self.__height

 # example: {(5, 12), 4x6}

 def __str__(self):
 …

 # your method would go here

6 of 8

CSc 110 Sample Final Exam #2 Solutions

1. While Loop Simulation

Method Call Value Returned
mystery(2, 9)

mystery(5, 1)

mystery(38, 5)

mystery(5, 5)

mystery(40, 10)

0

6

119

0

57

2. Inheritance Mystery

sock

sock 1 book 2 lamp 2
book 2 lamp 2

sock
pen 1

lamp 2

lamp

lamp 1
lamp 2

sock
sock 1 lamp 2
lamp 2

3. Dictionary/Set Mystery

 list1 = ['b', 'l', 'u', 'e']
 list2 = ['s', 'p', 'o', 't']

 dictionary returned: {b=s, e=t, l=p, o=u, p=l, s=b, t=e, u=o}

 list1: ['k', 'e', 'e', 'p']

 list2: ['s', 'a', 'f', 'e']

 dictionary returned: {a=e, e=p, f=e, k=s, p=e, s=k}

 list1 = ['s', 'o', 'b', 'e', 'r']

 list2 = ['b', 'o', 'o', 'k', 's']

 dictionary returned: {b=o, e=k, k=e, o=b, r=s, s=r}

4. Dictionary/Set Programming

 def union(m1, m2):

 result = {}

 for key, value in m1.items():

 result[key] = value

 for key, value in m2.items():

 if (key in result):

 result[key] = result[key] + value

 else:

 result[key] = value

 return result

7 of 8

5. String Programing

 def encode(s, n):

 result = ""

 for j in range(0, n):

 for i in range(0, len(s) – j, n):

 result += s[i + j]

 return result

6. List of Lists Programming

def num_unique(lis):

 unique = set()

 for i in range(0, len(lis)):

 for j in range(0, len(lis[i])):

 unique.add(lis[i][j])

 return len(unique)

7. List Programming

def longest_sorted_sequence(list):
 if (len(list) == 0):
 return 0

 max = 1
 count = 1

 for i in range(1, len(list)):

 if (list[i] >= list[i - 1]):
 count += 1

 else:
 count = 1

 if (count > max):
 max = count
 return max

8 of 8

8. Critters

class Bumblebee(Critter):
 def __init__(self):

 super(Bumblebee, self).__init__()
 self.__steps = 0
 self.__max = 1

 self.__direction = 0 # 0=west, 1=south, 2=east, 3=north

 def get_move(self):

 self.__steps += 1
 if (self.__steps > self.__max):
 # Pick a new direction and re-set the steps counter

 self.__steps = 1
 self.__max += 1
 self.__direction = (self.__direction + 1) % 4

 if (self.__direction == 0):

 return DIRECTION_WEST

 elif (self.__direction == 1):
 return DIRECTION_SOUTH
 elif (self.__direction == 2):

 return DIRECTION_EAST
 else: # self.__direction == 3
 return DIRECTION_NORTH

9. Classes

def union(self,r):

 # find the union's bounds
 left = min(self.__x, r.getx())

 top = min(self.__y, r.gety())

 right = max(self.__x + self.__width, r.getx() + r.get_width())
 bottom = max(self.__y + self.__height, r.gety() + r.get_height())

 self.__x = left
 self.__y = top
 self.__width = right - left

 self.__height = bottom - top

