
1 of 8

CSc 110 Midterm 2 Sample Exam #1

1. List Mystery
Consider the following function:

def list_mystery(list):
 x = 0
 for i in range(0, len(list) - 1):
 if (list[i] > list[i + 1]):
 x += 1
 return x

 In the left-hand column below are specific lists of integers. Indicate in the right-hand column what value would be
returned by function list_mystery if the integer list in the left-hand column is passed as its parameter.

Original Contents of List Value Returned

a1 = [8]
result1 = list_mystery(a1)

a2 = [14, 7]
result2 = list_mystery(a2)

a3 = [7, 1, 3, 2, 0, 4]
result3 = list_mystery(a3)

a4 = [10, 8, 9, 5, 6]
result4 = list_mystery(a4)

a5 = [8, 10, 8, 6, 4, 2]
result5 = list_mystery(a5)

2 of 8

2. Reference Semantics Mystery
The following program produces 4 lines of output. Write the output below, as it would appear on the console.

 def main():
 y = 1
 x = 3
 a = [0] * 4

 mystery(a, y, x)
 print(str(x) + " " + str(y) + " " + str(a))

 x = y - 1
 mystery(a, y, x)
 print(str(x) + " " + str(y) + " " + str(a))

 def mystery(a, x, y):
 if (x < y):
 x += 1
 a[x] = 17
 else:
 a[y] = 17
 print(str(x) + " " + str(y) + " " + str(a))

3 of 8

3. Assertions
For the following function, identify each of the three assertions in the table below as being either ALWAYS true,
NEVER true or SOMETIMES true / sometimes false at each labeled point in the code. You may abbreviate these
choices as A/N/S respectively.

def mystery():
 y = 0
 z = 1
 next = int(input())

 # Point A
 while (next >= 0):
 # Point B
 if (y > z):
 # Point C
 z = y
 y += 1
 next = int(input())
 # Point D

 # Point E
 return z

 next < 0 y > z y == 0

Point A
Point B
Point C
Point D
Point E

4 of 8

4. File Processing
Write a function named word_stats that accepts as its parameter the name of a file that contains a sequence of
words and that reports the total number of words (as an integer) and the average word length (as an un-rounded real
number). For example, suppose file contains the following words:

To be or not to be, that is the question.

 For the purposes of this problem, we will use whitespace to separate words. That means that some words include
punctuation, as in "be,". For the input above, your function should produce exactly the following output:

Total words = 10
Average length = 3.2

5 of 8

6. List Programming
Write a function named min_gap that accepts an integer list as a parameter and returns the minimum 'gap' between
adjacent values in the list. The gap between two adjacent values in a list is defined as the second value minus the first
value. For example, suppose a variable called list is a list of integers that stores the following sequence of values.

list = [1, 3, 6, 7, 12]

 The first gap is 2 (3 - 1), the second gap is 3 (6 - 3), the third gap is 1 (7 - 6) and the fourth gap is 5 (12 - 7). Thus, the
call of min_gap(list) should return 1 because that is the smallest gap in the list. Notice that the minimum gap
could be a negative number. For example, if list stores the following sequence of values:

[3, 5, 11, 4, 8]

 The gaps would be computed as 2 (5 - 3), 6 (11 - 5), -7 (4 - 11), and 4 (8 - 4). Of these values, -7 is the smallest, so it
would be returned.

 This gap information can be helpful for determining other properties of the list. For example, if the minimum gap is
greater than or equal to 0, then you know the array is in sorted (nondecreasing) order. If the gap is greater than 0, then
you know the list is both sorted and unique (strictly increasing).

 If you are passed a list with fewer than 2 elements, you should return 0.

6 of 8

6. Programming
Write a function named longest_sorted_sequence that accepts a list of integers as a parameter and that returns
the length of the longest sorted (nondecreasing) sequence of integers in the list. For example, if a variable named
list stores the following values:

List = [3, 8, 10, 1, 9, 14, -3, 0, 14, 207, 56, 98, 12]

 then the call of longest_sorted_sequence(list) should return 4 because the longest sorted sequence in the
array has four values in it (the sequence -3, 0, 14, 207). Notice that sorted means nondecreasing, which means that
the sequence could contain duplicates. For example, if the list stores the following values:

list2 = [17, 42, 3, 5, 5, 5, 8, 2, 4, 6, 1, 19]

 Then the function would return 5 for the length of the longest sequence (the sequence 3, 5, 5, 5, 8). Your function
should return 0 if passed an empty list. Your function should return 1 if passed a list that is entirely in decreasing
order or contains only one element.

7 of 8

Solutions

1.
Call
a1 = [8]
result1 = list_mystery (a1)

a2 = [14, 7]
result2 = list_mystery (a2)

a3 = [7, 1, 3, 2, 0, 4]
result3 = list_mystery (a3)

a4 = [10, 8, 9, 5, 6]
result4 = list_mystery (a4)

a5 = [8, 10, 8, 6, 4, 2]
result5 = list_mystery (a5)

Value Returned

0

1

3

2

4

2.
2 3 [0, 0, 17, 0]
3 1 [0, 0, 17, 0]
1 0 [17, 0, 17, 0]
0 1 [17, 0, 17, 0]

3.
 next < 0 y > z y == 0

Point A SOMETIMES NEVER ALWAYS

Point B NEVER SOMETIMES SOMETIMES

Point C NEVER ALWAYS NEVER

Point D SOMETIMES SOMETIMES NEVER

Point E ALWAYS SOMETIMES SOMETIMES

8 of 8

4.
def word_stats(file_name):
 words = open(file_name).read()
 words = words.split()
 count = 0
 sum_length = 0

 for word in words:
 count += 1
 sum_length += len(word)

 average = sum_length / count
 print("Total words = " + str(count))
 print("Average length = " + str(average))

6.
def min_gap(list):
 if (len(list) < 2):
 return 0
 else:
 min = list[1] - list[0]
 for i in range(2, len(list)):
 gap = list[i] - list[i - 1]
 if (gap < min):
 min = gap
 return min

7.
def longest_sorted_sequence(list):
 if (len(list) == 0):
 return 0

 max = 1
 count = 1
 for i in range(1, len(list)):
 if (list[i] >= list[i - 1]):
 count += 1
 else:
 count = 1

 if (count > max):
 max = count
 return max

