
1 of 3

CSc 110, Spring 2017
Programming Assignment #8: Animal Shelter (20 points)

Due Tuesday, March 21, 2017, 7:00 PM

Part 1:
This program focuses on using lists that change size and

also demonstrates a type of program that maintains data in

a manner useful in supporting typical volunteer

organizations. Turn in a file named animal_shelter.py

on the Homework section of the course web site.

Program
Description:

In this assignment you will

write a program that keeps

track of animals at an

animal shelter.

The hope is that all animals

at a shelter will be adopted

soon after entering. However, quick adoptions don’t

always happen. To speed up adoption and to avoid

overcrowding, a shelter may transfer animals to another

shelter.

When your program starts, it will read from three input

files. Each file contains information about pets in the

format of the file shown above. The file pets.txt contains

the pets currently at the shelter, transferred.txt contains the

pets that have been transferred from this shelter to another,

and adopted.txt contains the pets that have been adopted

from this shelter. The contents of the files will be in

alphabetical order by pet name.

Specification of Options:

adopt: When the user types this option, the program

should prompt for the type of pet and then prompt for the

pet’s name as shown in the sample output. This pet should

then be removed from the shelter and added to the list of

pets that have been adopted. If a pet of this type and name

does not exist, the program should print out a not found

message as shown in the sample output.

intake: When the user types this option, the program

should prompt the user for a file name as shown in the

sample output. This file will be in the same format as the

files read in at the beginning of the program and the pets

will also be alphabetized by name. Your program should

add all of the pets from this file to the shelter list, making

sure to maintain the sorted order of the shelter list.

list: When the user types this option, the program should

prompt the user for a type of pet (cat, dog, hamster, etc).

The program should then display a list of all pets at the

shelter of that type. If the user enters “all” instead of a

specific type, all pets should be displayed.

dog alyson 5.5

cat Chester 1.5

cat felice 16

DOG jesse 14

cat merLIN 5

cat percy 12

cat PUPPET 18

parrot sue 2.3

Welcome to animal shelter management software

version 1.0!

Type one of the following options:

adopt: adopt a pet

intake: add more animals to the shelter

list: display all adoptable pets

quit: exit the program

save: save the current data

transfer: transfer pets to another shelter

option? list

animal type? all

('alyson', 5.5, 'dog')

('chester', 1.5, 'cat')

('felice', 16.0, 'cat')

('jesse', 14.0, 'dog')

('merlin', 5.0, 'cat')

('percy', 12.0, 'cat')

('puppet', 18.0, 'cat')

Type one of the following options:

adopt: adopt a pet

intake: add more animals to the shelter

list: display all adoptable pets

quit: exit the program

save: save the current data

transfer: transfer pets to another shelter

option? transfer

file name? to_transfer.txt

Type one of the following options:

adopt: adopt a pet

intake: add more animals to the shelter

list: display all adoptable pets

quit: exit the program

save: save the current data

transfer: transfer pets to another shelter

option? list

cats, dogs or all? cat

('chester', 1.5, 'cat')

('felice', 16.0, 'cat')

('merlin', 5.0, 'cat')

('percy', 12.0, 'cat')

('puppet', 18.0, 'cat')

Type one of the following options:

adopt: adopt a pet

intake: add more animals to the shelter

list: display all adoptable pets

quit: exit the program

save: save the current data

transfer: transfer pets to another shelter

option? quit

5 pets currently in the shelter

0 adopted

0 transferred

2 of 3

quit: When the user types this option, the program should print the current shelter statistics, as shown in the sample output,

and exit.

save: When the user types this option, the program should write the current contents of the shelter list, the transferred pet

list, and the adopted pet list to the same files this program read the data from on startup. The data should be saved in the

original format it was read in.

transfer: When the user types this option, the program should prompt the user for a file name as shown in the sample

output. This file will be in the same format as the files read in at the beginning of the program and the pets will also be

alphabetized by name. Your program should move all of the pets listed in the file the user specified out of the shelter and

into the transferred list. You may assume all listed pets are in the shelter when the command is run. You may only loop

through the shelter list one time every time the user selects this option.

If the user inputs anything besides the options above, the user should be re-prompted for a valid option as shown in the

sample output.

All comparisons of strings should be case insensitive.

Implementation and Style Guidelines:

As always, a major focus of our style grading is redundancy. As much as possible, avoid redundancy and repeated logic

in your code.

You will need to keep track of the pets in the shelter, the pets that have been transferred, and the pets that have been adopted.

You may use lists of tuples to keep track of this data. You may alter these three lists throughout your program but you may

not copy or replace them or create additional lists. You should use the list and its functions appropriately, and take advantage

of its ability to "shift" elements as they are added or removed. Your list should not store any invalid or None elements as a

result of removing pets.

You should introduce constants for any hardcoded values that appear in the code.

You should follow good general Python style guidelines such as: appropriately using control structures like loops and

if/else statements; avoiding redundancy using techniques such as functions, loops, and factoring common code out of

if/else statements; using good variable and function names; and not having any lines of code longer than 100 characters

in length.

You should comment your code with a heading at the top of your class with your name, section, and a description of the

overall program. Please also indicate how long you spent on this assignment in your heading by adding a comment like,

hours spent: 7. Also place a comment heading on top of each function, and a comment on any complex sections

of your code. Comment headings should use descriptive complete sentences and should be written in your own words,

explaining each function’s behavior, parameters, return values, and assumptions made by your code, as appropriate.

Your solution should use only material taught in class and should use no material past lecture 23.

3 of 3

Part 2:
This part of the assignment will give you an opportunity to improve your testing skills. Turn in two files whitebox.py and

blackbox.py.

Black Box Testing

Given the following function description, write a series of up to 6 tests as described in class, that test all important cases.

DO NOT write the code to solve this problem!

Description

Write a function named remove_consecutive_duplicates that accepts as a list of integers, and modifies it by removing

any consecutive duplicates. For example, if a list named list stores [1, 2, 2, 3, 2, 2, 3], the call of

remove_consecutive_duplicates(list) should modify it to store [1, 2, 3, 2, 3].

White Box Testing

Given the following code, write up to 6 tests as described in class, that test all important cases. The code should find the

longest sorted (increasing) sequence between the start and stop (inclusive) and return its length. The code may not be correct.

Code

def longest_sorted_sequence(list, start, stop):

 if (len(list) == 0):

 return 0

 max = 1

 count = 1

 for i in range(start, stop):

 if (list[i] >= list[i - 1]):

 count += 1

 else:

 count = 1

 if (count > max):

 max = count

 return max

Remember, each test should test one thing. It should have a descriptive error message. Each test should be able to discover

a different type of error. Your testing code will be held to the same style standards as the rest of the code you have turned

in this semester.

Note: there are many possible correct answers to part 2. We want to see that you are thinking about testing and following

the principles we have covered but there are many, many good combinations of tests you can write.

