
CSc 110, Spring 2017
Lecture 3: Expressions, Variables and Loops

Adapted from slides by Marty Stepp and Stuart Reges

1

Data and expressions

2

Data types

 Internally, computers store everything as 1s and 0s
104  01101000

'h'  01101000

'hi'  0110100001101001

How are 104 and h differentiated?

type: A category of data values.
 Constrains the operations that can be performed on data
Examples: integer, real number, string

3

Some Python number types

Name Description Examples

• int integers 42

• -3

• 0

• 92634

• 1267650600228229401496703205376

• float real numbers 3.1

• 1.4142135623730951

• -0.25

•

4

Expressions

• expression: A value, or operation that produces a value.

• Examples:
42

1 + 4 * 5

(7 + 2) * 6 / 3

"Hello, world!"

• The simplest expression is a literal value.
• A complex expression can use operators and parentheses.

As a program runs, its expressions are evaluated to produce values.

• What value does 42 produce?
• What value does 1+5 produce?

5

Arithmetic operators

• operator: Combines multiple values or expressions.

• + addition
• - subtraction (or negation)
• * multiplication
• / division
• // integer division (a.k.a. leave off any remainder)
• % modulus (a.k.a. remainder)
• ** exponent

• An arithemetic operator can be used with mixed number types

8 / 5.2 produces 1.5384615384615383

1 + 3.5 produces 4.5

6

Integer division with //

• When we divide integers with //, the quotient is also an integer.
• 14 // 4 is 3, not 3.5

3 4 52

4) 14 10) 45 27) 1425

12 40 135

2 5 75

54

21

• More examples:
• 32 // 5 is 6
• 84 // 10 is 8
• 156 // 100 is 1

What happens when you divide by 0?

7

Integer remainder with %

• The % operator computes the remainder from integer division.
• 14 % 4 is 2
• 218 % 5 is 3

3 43
4) 14 5) 218

12 20
2 18

15
3

• Applications of % operator:
• Obtain last digit of a number: 230857 % 10 is 7

• Obtain last 4 digits: 658236489 % 10000 is 6489

• See whether a number is odd: 7 % 2 is 1, 42 % 2 is 0

What is the result?
45 % 6

2 % 2

8 % 20

11 % 0

8

Precedence

• precedence: Order in which operators are evaluated.
• Generally operators evaluate left-to-right.
1 - 2 - 3 is (1 - 2) - 3 which is -4

• But * / // % have a higher level of precedence than + -
1 + 3 * 4 is 13

6 + 8 // 2 * 3
6 + 4 * 3
6 + 12 is 18

• Parentheses can force a certain order of evaluation:
(1 + 3) * 4 is 16

• Spacing does not affect order of evaluation
1+3 * 4-2 is 11

9

Operator precedence

**

+pos -neg

/ % // *

+ -

Precedence examples

• 1 * 2.0 + 3 * 5 % 4

• _/
|
2.0 + 3 * 5 % 4

• _/
|

2.0 + 15 % 4

• ___/
|

2.0 + 3

• ________/
|
5.0

1 + 8 % 3 * 2 - 9

_/
|

1 + 2 * 2 - 9

___/
|

1 + 4 - 9

______/
|
5 - 9

_________/
|
-4

10

Precedence questions

• What values result from the following expressions?

• 9 // 5

• 695 % 20

• 7 + 6 * 5

• 7 * 6 + 5

• 248 % 100 / 5

• 6 * 3 - 9 // 4

• (5 - 7) * 2 ** 2

• 6 + (18 % (17 - 12))

11

Operation on strings

• String concatenation: + operator

"Hello," + " world!" is "Hello, world!"

• Example using print statement

print("Hello," + " world!")

12

Variables

13

Calculate total owed, assuming 8% tax / 15% tip

print("Subtotal:")

print(38 + 40 + 30)

print("Tax:")

print((38 + 40 + 30) * .08)

print("Tip:")

print((38 + 40 + 30) * .15)

print("Total:")

print(38 + 40 + 30 + (38 + 40 + 30) * .15 + (38 + 40 + 30) * .08)

• The subtotal expression (38 + 40 + 30) is repeated

• So many print statements

Receipt example

14

Variables

Variable : A named location in the computer's memory that
holds a value.

• Variables must be initialized before they can be used.
• The value can be an expression; the variable stores its result.

• Syntax for variable assignment:
name = expression

• The rules for name are the same as for function names:

Consist of upper and lower case letters, "_", and digits 0 through 9

• Examples:

• zipcode = 90210

• total = 1.0 + 2.25

zipcode 90210

total 3.25

15

Using variables

• Once given a value, a variable can be used in expressions:

x = 3 # x is 3

y = 5 * x # now y is 15

• You can assign a value more than once:

x = 3 # 3 here

x = 4 + 7 # now x is 11

x 3x 11

16

Assignment and algebra

• Assignment uses = , but it is not an algebraic equation.

• = means, "store the value at right in variable at left"

• The right side expression is evaluated first,
and then its result is stored in the variable at left.

• What happens here?

x = 3

x = x + 2 # ???

x 3x 5

17

Printing a variable's value

• Use + str(value) to print a string and a variable's value on one line.

• grade = (95.1 + 71.9 + 82.6) / 3.0

print("Your grade was " + str(grade))

students = 11 + 17 + 4 + 19 + 14

print("There are " + str(students) +

" students in the course.")

• Output:

Your grade was 83.2

There are 65 students in the course.

18

Receipt question

Improve the receipt program using variables.

def main():

Calculate total owed, assuming 8% tax / 15% tip

print("Subtotal:")

print(38 + 40 + 30)

print("Tax:")

print((38 + 40 + 30) * .08)

print("Tip:")

print((38 + 40 + 30) * .15)

print("Total:")

print(38 + 40 + 30 + (38 + 40 + 30) * .15 + (38 + 40 + 30) * .08)

19

Receipt answer

def main():

Calculate total owed, assuming 8% tax / 15% tip

subtotal = 38 + 40 + 30 # int

tax = subtotal * .08 # float

tip = subtotal * .15 # float

total = subtotal + tax + tip # float

print("Subtotal: " + str(subtotal))

print("Tax: " + str(tax))

print("Tip: " + str(tip))

print("Total: " + str(total))

20

Repetition with for loops

• So far, repeating an action results in redundant code:
makeBatter()
bakeCookies()
bakeCookies()
bakeCookies()
bakeCookies()
bakeCookies()
frostCookies()

• Python's for loop statement performs a task many times.
mixBatter()

for i in range(1, 6): # repeat 5 times
bakeCookies()

frostCookies()

21

Control structures

• Control structure: a programming construct that affects the flow of a
program's execution

• Controlled code may include one or more statements

• The for loop is an example of a looping control structure

22

for loop syntax

for variable in range (start, stop):
statement
statement
...
statement

• Set the variable equal to the start value

• Repeat the following:

• Check if the variable is less than the stop. If not, stop.

• Execute the statements.

• Increase the variable's value by 1.

body

header

23

Indentation

• Python uses indentation to show that lines of code are inside control
structures

• Always use only spaces or only tabs, otherwise you will get very
confusing errors!

24

Repetition over a range

print("1 squared = " + str(1 * 1))
print("2 squared = " + str(2 * 2))
print("3 squared = " + str(3 * 3))
print("4 squared = " + str(4 * 4))
print("5 squared = " + str(5 * 5))
print("6 squared = " + str(6 * 6))

• Intuition: "I want to print a line for each number from 1 to 6"

• The for loop does exactly that!

for i in range(1, 7):

print(str(i) + " squared = " + str(i * i));

• "For each integer i from 1 through 6, print ..."

25

Loop walkthrough

for i in range(1, 5):

print(str(i) + " squared = " + str(i * i))

print("Whoo!")

Output:

1 squared = 1

2 squared = 4

3 squared = 9

4 squared = 16

Whoo!

26

Multi-statement loop body

print("+----+")
for i in range(1, 4):

print("\\ /")
print("/ \\")

print("+----+")

• Output:
+----+
\ /
/ \
\ /
/ \
\ /
/ \
+----+

27

Expressions for counter

high_temp = 5

for i in range(-3, high_temp // 2 + 1):

print(i * 1.8 + 32)

• Output:
26.6
28.4
30.2
32.0
33.8
35.6

28

print (' ', end='')

• Adding ,end='' allows you to print without moving to the next
line
• allows you to print partial messages on the same line

highTemp = 5

for i in range(-3, int(highTemp / 2 + 1)):

print(i * 1.8 + 32, end=' ')

• Output:
26.6 28.4 30.2 32.0 33.8 35.6

• Either concatenate ' ' to separate the numbers or set end=' '

29

