CSc 110, Spring 2017/

Lecture 3: Expressions, Variables and Loops

Adapted from slides by Marty Stepp and Stuart Reges

Hackles

By Drake Emko & Jen Brodzik

programming more

Preston, do you conside
of an art or a science ?

‘}

N

Quiet ! I'm trying to cut
and paste 300 lines of mde
into 7 different places !

@1

http://hackles.org

Copyright {03 2001 Drake Eriko & Jen Brodzik

Data and expressions

Data types

® Internally, computers store everything as 1s and Os
104 —> 01101000
'h' > 01101000
'hi' = 0110100001101001

® How are 104 and n differentiated?

® type: A category of data values.
® Constrains the operations that can be performed on data
Examples: integer, real number, string

Some Python number types

Name Description Examples
int integers 42
-3
0
92634

1267650000228229401496703205376

float real numbers 3.1

1.4142135623730951
-0.25

Expressions

* expression: A value, or operation that produces a value.

e Examples:
42
1 + 4 * 5
(7 + 2y * 6 / 3
"Hello, world!"

* The simplest expression is a literal value.
* A complex expression can use operators and parentheses.

As a program runs, its expressions are evaluated to produce values.

* What value does 42 produce?
* What value does 1+5 produce?

Arithmetic operators

e operator: Combines multiple values or expressions.

addition

subtraction (or negation)

multiplication

division

integer division (a.k.a. leave off any remainder)
modulus (a.k.a. remainder)

exponent

S~
io\o\\ * | +

* An arithemetic operator can be used with mixed number types

8 / 5.2 produces 1.5384615384615383
1 + 3.5 produces 4.5

Integer division with //

 When we divide integers with //, the quotient is also an integer.

e 14 // 4is 3,not 3.5

_ 3 __ 4
4) 14 10) 45
12 40
2 5

* More examples:
e 32 // 5 is 6
84 // 10 is 8
e 156 // 100is 1

What happens when you divide by 07?

52

1425
135

75
54
21

Integer remainder with %

* The % operator computes the remainder from integer division.

o

e 14 % 4 is 2 What is the result?
e 218 $ 5 is 3 45 % 6
3 43 2 % 2
15 °
13
e Applications of % operator:
e Obtain last digit of a number: 230857 % 10is7
e Obtain last 4 digits: 658236489 % 10000is 6489
* See whether a number is odd: 7 % 2isl, 42 % 2is0

Precedence

* precedence: Order in which operators are evaluated.

* Generally operators evaluate left-to-right.
1 -2 - 3is (1 - 2) - 3 whichis -4

* But * / // % have a higher level of precedence than + -
1 + 3 * 4 is13
6 + 8 // 2 * 3
6 + 4 * 3
6 + 12 is18

* Parentheses can force a certain order of evaluation:
(1 + 3) * 4 is16

* Spacing does not affect order of evaluation
1+3 * 4-2 is11

Operator precedence

* %

+pos -neg
/ /] *
+

| o©

Precedence examples

1 * 2.0+ 3 * 5 % 4 1 + 8 % 3 * 2 -9
\ / \ /
1 |
2.0 + 3 5 % 4 1 + 2 x 2 - 9
\ / \ /
) |
2.0 + 15 % 4 - A _
\ /
1 \ /
2.0 + 3 g o
\ /
, \ /
5.0 |

10

e
Precedence questions

* What values result from the following expressions?

*9 // 5
* 695 %
7 + 5
« 7 * 5
248 % 100 / 5

6 *x 3 -9 // 4

(5 = 7) * 2 ** 2

6 + (18 % (17 - 12))

0

S O
+ N

11

T ———
Operation on strings

* String concatenation: + operator
"Hello," + " world!" Is"Hello, world!"™

* Example using print statement
print ("Hello," + " world!")

12

Variables

Receipt example

Calculate total owed, assuming 8% tax / 15% tip
print ("Subtotal:")
print (38 + 40 + 30)

print ("Tax:")
print ((38 + 40 + 30) * .08)

print ((38 + 40 + 30) * .15)

print ("Total:")

(
(
(
print ("Tip:")
(
(
print (38 + 40 + 30 + (38 + 40 + 30) * .15 + (38 + 40 + 30) * .08)

* The subtotal expression (38 + 40 + 30) isrepeated
 So many print statements

Variables

Variable : A named location in the computer's memory that

e Variables must be initialized before they can be used.

holds a value.

* The value can be an expression; the variable stores its result.

* Syntax for variable assignment:

name

expression

* The rules for name are the same as for function names:

Consist of upper and lower case letters, " ", and digits O through 9

e Examples:

e zipcode

* total

= 90210

1.0 + 2.25

zlpcode

90210

total

3.25

Using variables

* Once given a value, a variable can be used in expressions:

X = 3 # x is 3

Y 5 * x # now y is 15

* You can assign a value more than once:

X = 3 # 3 here

x =4 + 7 # now x is 11

Assignment and algebra

* Assignment uses =, but it is not an algebraic equation.

= means, "store the value at right in variable at left"

* The right side expression is evaluated first,
and then its result is stored in the variable at left.

 What happens here?

X = 3
X =x + 2 $ 2727

Printing a variable's value

* Use + str (value) to print a string and a variable's value on one line.

e grade = (95.1 + 71.9 + 82.6) / 3.0
print ("Your grade was " + str (grade))

students = 11 + 17 + 4 + 19 + 14
print ("There are " + str (students) +
" students in the course.")

e QOutput:

Your grade was 83.2
There are 65 students in the course.

Recelpt question

Improve the receipt program using variables.

def main () :
Calculate total owed, assuming 8% tax / 15% tip
print ("Subtotal:")
print (38 + 40 + 30)

print ("Tax:")
print ((38 + 40 + 30) * .08)

print ("Tip:")
print ((38 + 40 + 30) * .15)

print ("Total:")
print (38 + 40 + 30 + (38 + 40 + 30) * .15 + (38 + 40 + 30) * .08)

Recelpt answer

def main () :
Calculate total owed, assuming 8% tax / 15% tip

subtotal = 38 + 40 + 30 # int
tax = subtotal * .08 # float
tip = subtotal * .15 # float
total = subtotal + tax + tip # float
print ("Subtotal: " 4+ str (subtotal))
print ("Tax: " + str(tax))

print ("Tip: " + str(tip))

print ("Total: " 4+ str(total))

20

Repetition with for loops

 So far, repeating an action results in redundant code:

makeBatter ()

bakeCookies ()
bakeCookies ()
bakeCookies ()
bakeCookies ()
bakeCookies ()
frostCookies ()

* Python's for loop statement performs a task many times.
mixBatter ()

for i in range(l, 6): # repeat 5 times
bakeCookies ()

frostCookies ()

21

Control structures

* Control structure: a programming construct that affects the flow of a
program's execution

* Controlled code may include one or more statements

* The for loop is an example of a looping control structure

22

for loop syntax

for variable in range (start, stop): }header
statement ~
statement
~ body
statement D

» Set the variable equal to the start value
* Repeat the following:

* Check if the variable is less than the stop. If not, stop.
* Execute the statements.
* Increase the variable's value by 1.

23

Indentation

* Python uses indentation to show that lines of code are inside control
structures

* Always use only spaces or only tabs, otherwise you will get very
confusing errors!

24

Repetition over a range

squared
squared
squared
squared
squared
squared

* Intuition: "l want to print a line for each number from 1 to 6"

* The for loop does exactly that!

for 1 in range (1,
print (str (1)

* "For each integer i from 1 through 6, print ..."

1 T I | R | R
+ + 4+ + + +
X % X X *
OOk W

+ " squared = " + str(i * 1i));

Loop walkthrough

for 1 1n range (1,

print (str (1) squared + str(i * 1))

print ("Whoo!™)

Output:

1
2
3
4

squared

squared
squared
squared

Whoo'!

e
Multi-statement loop body

print ("+---—-+")
for 1 in range(l, 4):
print("\\ /n
print ("/ \\")

print ("+----+")

* Qutput:
+————+

|\/\/\/
|/\/\/\

27

Expressions for counter

high temp = 5

for 1 in range(-3, high temp // 2 + 1):

print(1 * 1.8 + 32)

* Qutput:

26.
28.
30.
32.
33.
35.

o) 0O O DN PO

28

print (', end=")

* Adding , end="" allows you to print without moving to the next
line
* allows you to print partial messages on the same line
highTemp = 5
for i in range (-3, int (highTemp / 2 + 1)):
print(i * 1.8 + 32, end="' ")

e Qutput:
20.6 28.4 30.2 32.0 33.8 35.6

e Either concatenate ' ' toseparate the numbers orset end="' '

29

