
CSc 110, Spring 2017
Lecture 4: Nested Loops and Loop Figures

Adapted from slides by Marty Stepp and Stuart Reges

Can you write this in Python?

1

Review: for loops

loop: Repeat one or more statements a specified number of times

for i in range(1, 6):

print(i*i) # square variable i

• Output:

1

4

9

16

25

• The loop repeats 5 times.

2

Review: print conventions

• print (' ', end=' ')

• Adding ,end='' allows you to print without moving to the next
line
• allows you to print on the same line; no advancing to the next line

• the quotes contain any valid string

for i in range(-3, 3):

print(i, end=' ')

• Output:
-3 -2 -1 0 1 2

3

New: Changing step size
• Add a third number to the end of range, this is the step size

• A negative number will count down instead of up

for i in range(10, 0, -1):

print(i, end=' ')

• output:

10 9 8 7 6 5 4 3 2 1

• How would we produce the following Rocket Countdown?

T-minus 10! 9! 8! 7! 6! 5! 4! 3! 2! 1! blastoff!!

The end.

4

Rocket Countdown

• Use a negative number for step size

• Use str()and concatenation in print()

print("T-minus ")

for i in range(10, 0, -1):

print(str(i) + "! ", end='')

print("blastoff!!")

print("The end.")

• Output:

T-minus 10! 9! 8! 7! 6! 5! 4! 3! 2! 1! blastoff!!

The end.

5

Nested loops

• nested loop: A loop placed inside another loop.
for i in range(1, 6):

for j in range(1, 11):
print("*", end="")

print() # to end the line

• Output:

• The outer loop repeats 5 times; the inner one 10 times.
• "sets and reps" exercise analogy

7

Nested for loop exercise

• What is the output of the following nested for loops?

for i in range(1, 6):

for j in range(1, i + 1):

print("*", end='')

print()

• Output:

*

**

8

Nested for loop exercise

• What is the output of the following nested for loops?

for i in range(1, 6):

for j in range(1, i + 1):

print(i, end='')

print()

• Output:

1

22

333

4444

55555

9

Complex lines

• What nested for loops produce the following output?

....1

...2

..3

.4

5

• We must build multiple complex lines of output using:
• an outer "vertical" loop for each of the lines
• inner "horizontal" loop(s) for the patterns within each line

outer loop (loops 5 times because there are 5 lines)

inner loop (repeated characters on each line)

10

Outer and inner loop

• First write the outer loop, from 1 to the number of lines.

for line in range(1, 6):

...

• Now look at the line contents. Each line has a pattern:
• Zero or more dots, then a number

....1

...2

..3

.4

5

• Observation: the number of dots is related to the line number.

11

Mapping loops to numbers

for count in range(1, 6):

print(...)

• What statement in the body would cause the loop to print:

4 7 10 13 16

for count in range(1, 6):

print(3 * count + 1, end=' ');

12

Loop tables
for count in range(1, 6):

print(…)

• What statement in the body would cause the loop to print:
2 7 12 17 22

• To see patterns, make a table of count and the numbers.
• Each time count goes up by 1, the number should go up by 5.

• But count * 5 is too great by 3, so we subtract 3.
count number to print 5 * count

1 2 5

2 7 10

3 12 15

4 17 20

5 22 25

5 * count - 3

2

7

12

17

22

13

Loop tables question

• What statement in the body would cause the loop to print:
17 13 9 5 1

• Let's create the loop table together.
• Each time count goes up 1, the number printed should ...

• But this multiple is off by a margin of ...

count number to print

1 17

2 13

3 9

4 5

5 1

-4 * count -4 * count + 21

-4 17

-8 13

-12 9

-16 5

-20 1

-4 * count

-4

-8

-12

-16

-20

14

Another view: Slope-intercept

• The next three slides present the mathematical basis for
the loop tables. Feel free to skip it.

-10

-5

0

5

10

15

20

25

-2 0 2 4 6

count (x) number to print (y)

1 2

2 7

3 12

4 17

5 22

15

Another view: Slope-intercept

• Caution: This is algebra, not assignment!

• Recall: slope-intercept form (y = mx + b)

• Slope is defined as “rise over run” (i.e. rise / run). Since the “run” is always 1 (we increment along x
by 1), we just need to look at the “rise”. The rise is the difference between the y values. Thus, the
slope (m) is the difference between y values; in this case, it is +5.

• To compute the y-intercept (b), plug in the value of y at x = 1 and solve for b. In this case, y = 2.
y = m * x + b

2 = 5 * 1 + b

Then b = -3

• So the equation is
y = m * x + b

y = 5 * x – 3

y = 5 * count - 3

count (x) number to print (y)

1 2

2 7

3 12

4 17

5 22

16

Another view: Slope-intercept

• Algebraically, if we always take the value of y at

x = 1, then we can solve for b as follows:
y = m * x + b

y1 = m * 1 + b

y1 = m + b

b = y1 – m

• In other words, to get the y-intercept, just subtract the slope from the first y
value (b = 2 – 5 = -3)
• This gets us the equation

y = m * x + b

y = 5 * x – 3

y = 5 * count – 3

(which is exactly the equation from the previous slides)

17

Nested for loop exercise
• Make a table to represent any patterns on each line.

....1

...2

..3

.4

5

• To print a character multiple times, use a for loop.

for j in range(1, 5):

print(".") # 4 dots

line # of dots

1 4

2 3

3 2

4 1

5 0

-1 * line

-1

-2

-3

-4

-5

-1 * line + 5

4

3

2

1

0

18

Nested for loop solution

• Answer:
for line in range(1, 6):

for j in range(1, (-1 * line + 5 + 1)):

print(".", end='')

print(line)

• Output:
....1

...2

..3

.4

5

19

Nested for loop exercise

• What is the output of the following nested for loops?
for line in range(1, 6):

for j in range(1, -1 * line + 6):

print(".", end='')

for k in range(1, line):

print(line, end='')

print()

• Answer:
....1
...22
..333
.4444
55555

20

Nested for loop exercise

• Modify the previous code to produce this output:
....1

...2.

..3..

.4...

5....

• Answer:
for line in range(1,6):

for j in range(1, -1 * line + 6):

print(".", end='')

print(line, end='')

for j in range(1,line):

print(".", end='')

print()

21

Drawing complex figures

• Use nested for loops to produce the following output.

• Why draw ASCII art?
• Real graphics are quite intricate

• ASCII art has complex patterns

• Can focus on the algorithms

#================#

| <><> |

| <>....<> |

| <>........<> |

|<>............<>|

|<>............<>|

| <>........<> |

| <>....<> |

| <><> |

#================#
22

Development strategy

• Recommendations for managing complexity:

1. Design the program (think about steps or functions needed).

• write an English description of steps required

• use this description to decide the functions

2. Create a table of patterns of characters

• use table to write your for loops

#================#

| <><> |

| <>....<> |

| <>........<> |

|<>............<>|

|<>............<>|

| <>........<> |

| <>....<> |

| <><> |

#================#
23

1. Pseudocode

• pseudocode: An English description of an algorithm.

• Example: Drawing a 12 wide by 7 tall box of stars

print 12 stars.

for (each of 5 lines) :

print a star.

print 10 spaces.

print a star.

print 12 stars.

* *
* *
* *
* *
* *

24

Pseudocode algorithm

1. Line
• # , 16 =, #

2. Top half
• |

• spaces (decreasing)
• <>

• dots (increasing)
• <>

• spaces (same as above)
• |

3. Bottom half (top half upside-down)

4. Line
• # , 16 =, #

#================#

| <><> |

| <>....<> |

| <>........<> |

|<>............<>|

|<>............<>|

| <>........<> |

| <>....<> |

| <><> |

#================#
25

Functions from pseudocode

def main():

line()

top_half()

bottom_half()

line()

def top_half():

for line in range(1, 5):

contents of each line

def bottom_half() {

for line in range(1, 5):

contents of each line

def line():

...

26

2. Tables

• A table for the top half:
• Compute spaces and dots expressions from line number

line spaces dots

1 6 0

2 4 4

3 2 8

4 0 12

line spaces line * -2 + 8 dots 4 * line - 4

1 6 6 0 0

2 4 4 4 4

3 2 2 8 8

4 0 0 12 12

#================#

| <><> |

| <>....<> |

| <>........<> |

|<>............<>|

|<>............<>|

| <>........<> |

| <>....<> |

| <><> |

#================#
27

3. Writing the code

• Useful questions about the top half:
• Number of (nested) loops per line?

#================#

| <><> |

| <>....<> |

| <>........<> |

|<>............<>|

|<>............<>|

| <>........<> |

| <>....<> |

| <><> |

#================#
28

Partial solution

Prints the expanding pattern of <> for the top half of the figure.

def top_half():

for line in range(1, 5):

print("|", end="")

for space in range(1, line * -2 + 9):

print(" ", end="")

print("<>", end="")

for dot in range(1, line * 4 - 3):

print(".", end="")

print("<>", end="")

for space in range(1, line * -2 + 8):

print(" ", end="")

print("|")

29

Partial solution

Prints the expanding pattern of <> for the top half of the figure.

def top_half():

for line in range(1, 5):

print("|", end="")

for space in range(1, line * -2 + 9):

print(" ", end="")

print("<>", end="")

for dot in range(1, line * 4 - 3):

print(".", end="")

print("<>", end="")

for space in range(1, line * -2 + 8):

print(" ", end="")

print("|")

30

