
CSc 110, Spring 2017
Lecture 6: Parameters (cont.) and Graphics

Adapted from slides by Marty Stepp and Stuart Reges

1

Multiple parameters

• A function can accept multiple parameters. (separated by ,)
• When calling it, you must pass values for each parameter.

• Declaration:
def <name>(<name>, ..., <name>):

<statement>(s)

• Call:
<name>(<exp>, <exp>, ..., <exp>)

2

Multiple parameters example

def main():

print_number(4, 9)

print_number(17, 6)

print_number(8, 0)

print_number(0, 8)

def print_number(number, count):

for i in range(0, count):

print(number, end="")

print()

Output:

444444444

171717171717

00000000

• Modify the stars program to draw boxes with parameters.

3

Stars solution

Prints several lines and boxes made of stars.

Third version with multiple parameterized methods.

def main():

line(13)

line(7)

line(35)

print()

box(10, 3)

box(5, 4)

box(20, 7)

Prints the given number of

#stars plus a line break.

def line(count):

for i in range(0, count):

print("*", end="")

print()

Prints a box of stars of the given size.

def box(width, height):

line(width)

for line in range(0, height - 2):

print("*", end="")

for space in range(0, width - 2):

print(" ", end="")

print("*")

line(width)

4

Stars solution

Prints several lines and boxes made of stars.

Third version with multiple parameterized methods.

def main():

line(13)

line(7)

line(35)

print()

box(10, 3)

box(5, 4)

box(20, 7)

Prints the given number of

#stars plus a line break.

def line(count):

for i in range(0, count):

print("*", end="")

print()

Prints a box of stars of the given size.

def box(width, height):

line(width)

for line in range(0, height - 2):

print("*", end="")

for space in range(0, width - 2):

print(" ", end="")

print("*")

line(width)

5

Strings as parameters

say_hello("Allison")

teacher = "Bictolia"

say_hello(teacher)

def say_hello(name):

print("Welcome, " + name)

Output:

Welcome, Allison

Welcome, Bictolia

• Modify the stars program to use string parameters. Use a function
named repeat that prints a string many times.

6

Stars solution

Prints several lines and boxes made of stars.

Fourth version with String parameters.

def main():

line(13)

line(7)

line(35)

print()

box(10, 3)

box(5, 4)

box(20, 7)

Prints the given number of

stars plus a line break.

def line(count):

repeat("*", count)

print()

Prints a box of stars of the given size.

def box(width, height):

line(width)

for line in range(height – 2):

print("*", end="")

repeat(" ", width - 2)

print("*")

line(width)

Prints the given String the given

number of times.

def repeat(s, times):

for i in range(0, times):

print(s, end="")
7

Value semantics

• value semantics: When numbers and strings are passed as
parameters, their values are copied.
• Modifying the parameter will not affect the variable passed in.

def strange(x):

x = x + 1

print("1. x = " + x)

x = 23

strange(x)

print("2. x = " + x)

...

Output:

1. x = 24

2. x = 23

8

A "Parameter Mystery" problem

def main():

x = 9

y = 2

z = 5

mystery(z, y, x)

mystery(y, x, z)

def mystery(x, z, y):

print(str(z) + " and " + str(y - x))

9

Graphical objects

We will draw graphics in Python using a new kind of object:

• DrawingPanel: A window on the screen.
• Not part of Python; provided by the instructor. See class web site.

10

DrawingPanel
• Import the program that implements DrawingPanel

from drawingpanel import *

• To create a window:
<name> = DrawingPanel(<width>, <height>)
<name> = DrawingPanel(<width>, <height>, background="color")

Example:
panel = DrawingPanel(300, 200)

• The window has nothing on it.
• We can draw shapes and

lines on it.

• If passed the optional third parameter

it will have a background color
11

Named
colors

Chart credit Smith.edu 12

http://www.science.smith.edu/dftwiki/index.php/Color_Charts_for_TKinter

Custom colors

• You can construct custom colors using hex.
• # followed by six numbers 0 – 9 and letters A – F

• A is 10, B is 11 and so on

• #000000 is black

• #FFFFFF is white

• Colors get darker as the number gets lower

• The first two digits are the amount of red, the next two green, the last two blue

panel = DrawingPanel(80, 50, background="#3367D3")

13

Coordinate system

• Each (x, y) position is a pixel ("picture element").

• (0, 0) is at the window's top-left corner.
• x increases rightward and the y increases downward.

• The rectangle from (0, 0) to (200, 100) looks like this:

(0, 0) x+

(200, 100)

y+

14

Drawing shapes
panel.canvas.create_line(x1, y1, x2, y2, fill="color")

line between points (x1, y1), (x2, y2) in color

panel.canvas.create_oval(x1, y1, x2, y2, outline="color")

outline largest oval that fits in a box with top-left at (x1, y1) and

lower right at (x2, y2) outlined in color

panel.canvas.create_rectangle(x1, y1, x2, y2, outline="color")

outline of rectangle with top-left at (x1, y1) and bottom right at
(x2, y2) outlined in color

panel.canvas.create_text(x, y, text="string")

text centered vertically and horizontally around (x, y) 15

Filled in shapes

• To draw a shape with a fill set its fill instead of outline.

from drawingpanel import * # so I can use Graphics

def main():

p = DrawingPanel(150, 70)

inner red fill

p.canvas.create_rectangle(20, 10, 120, 60, fill="red")

• This will automatically fill the shape but give it a black border. To
remove the border add width=0.

p.canvas.create_rectangle(20, 10, 120, 60, fill="red", width=0)

16

Superimposing shapes

• When two shapes occupy the same pixels, the last one drawn is seen.

from drawingpanel import *

def main():

p = DrawingPanel(200, 100, background="light gray")

p.canvas.create_rectangle(10, 30, 110, 80, fill="black")

p.canvas.create_oval(20, 70, 40, 90, fill="red", width=0)

p.canvas.create_oval(80, 70, 100, 90, fill="red", width=0)

p.canvas.create_rectangle(80, 40, 110, 60, fill="cyan", width=0)

17

Drawing with loops

• The x1, y1, x2, y2 expression can use any variable.

panel = DrawingPanel(400, 300, background="yellow")

for i in range(1, 11):

panel.canvas.create_oval (100 + 20 * i, 5 + 20 * i,

150 + 20 * i, 55 + 20 * i

fill="red", width=0)

panel = DrawingPanel(250, 220)

for i in range(1, 11):

panel.canvas.create_oval (30, 5, 30 + 20 * i,

5 + 20 * i, fill="magenta")

18

Loops that begin at 0

• Beginning a loop at 0 can make coordinates easier to compute.

• Example:
• Draw ten stacked rectangles starting at (20, 20), height 10, width starting at

100 and decreasing by 10 each time:

panel = DrawingPanel(160, 160)

for i in range(0, 10):

panel.canvas.create_rectangle (20, 20 + 10 * i,

120 – 10 * i, 30 + 10 * i)

19

Drawing w/ loops questions

• Code from previous slide:

panel = DrawingPanel(160, 160)

for i in range(0, 10):

panel.canvas.create_rectangle (20, 20 + 10 * i,

120 – 10 * i, 30 + 10 * i)

• Write variations of the above
program that draw the figures
at right as output.

20

Drawing w/ loops answers

• Solution #1:
panel = DrawingPanel(160, 160)

for i in range(0, 10):

panel.canvas.create_rectangle (20 + 10 * i, 20 + 10 * i,

120, 30 + 10 * i)

• Solution #2:
panel = DrawingPanel(160, 160)

for i in range(0, 10):

panel.canvas.create_rectangle (110 – 10 * i, 20 + 10 * i,

120, 30 + 10 * i)

21

Parameterized figures

• Modify the car-drawing function so that it can draw many cars, such
as in the following image.
• Top-left corners: (10, 30), (150, 10)

• Hint: We must modify our draw_car function to accept x/y coordinates as
parameters.

22

Parameterized answer

def main():

panel = DrawingPanel(260, 100, background="light gray")

draw_car(panel, 10, 30)

draw_car(panel, 150, 10)

def draw_car(p, x, y):

p.canvas.create_rectangle(x, y, 100 + x, 50 + y, fill="black")

p.canvas.create_oval(x + 10, y + 40, x + 30, y + 60, fill="red", width=0)

p.canvas.create_oval(x + 70, y + 40, x + 90, y + 60, fill="red", width=0)

p.canvas.create_rectangle(x + 70, y + 10, x + 100, y + 30, fill="cyan",

width=0)

23

Modify draw_car to allow the car to be drawn at any size.
 Existing car: size 100. Second car: (150, 10), size 50.

Once you have this working, use a for loop with your function to
draw a line of cars, like the picture at right.
 Start at (10, 130), each size 40, separated by 50px.

Drawing parameter question

24

Drawing parameter answer

def main():

panel = DrawingPanel(260, 100, background="light gray")

draw_car(panel, 10, 30, 100)

draw_car(panel, 150, 10, 50)

for i in range(0, 5):

draw_car(panel, 10 + i * 50, 130, 40);

def draw_car(p, x, y, size):

p.canvas.create_rectangle(x, y, x + size, y + size / 2, fill="black")

p.canvas.create_oval(x + size / 10, y + size / 10 * 4, x + size / 10 * 3, y +

size / 10 * 6, fill="red", width=0)

p.canvas.create_oval(x + size / 10 * 7, y + size / 10 * 4, x + size / 10 * 9,

y + size / 10 * 6, fill="red", width=0)

p.canvas.create_rectangle(x + size / 10 * 7, y + size / 10, x + size,

y + size / 10 * 3, fill="cyan", width=0)

25

Animation with sleep

• DrawingPanel's sleep function pauses your program for a given
number of milliseconds.

• You can use sleep to create simple animations.
panel = DrawingPanel(250, 200)

for i in range(1, NUM_CIRCLES + 1):

panel.canvas.create_oval(15 * i, 15 * i, 30 + 15 * i, 30 + 15 * i)

panel.sleep(500)

• Try adding sleep commands to loops in past exercises in this chapter and
watch the panel draw itself piece by piece.

26

