
CSc 110, Spring 2017
Lecture 11: while Loops,

Fencepost Loops, and Sentinel Loops
Adapted from slides by Marty Stepp and Stuart Reges

1

Strings and ACSII values (decimal)
• All characters are assigned numbers internally by the computer, called

ASCII values.

• Examples:
'A' is 65, 'B' is 66, ' ' is 32
'a' is 97, 'b' is 98, '*' is 42

• We can get the ASCII value of a String of length 1 using ord(str)
ord('a') is 97

• The function chr(n) returns the character represented by the ASCII value n
chr(66) is 'B'

• This is useful because you can do the following:
chr(ord('a') + 2) is 'c'

2

String question

• A Caesar cipher is a simple encryption where a message is encoded by
shifting each letter by a given amount.
• e.g. with a shift of 3, A D, H K, X A, and Z C

• Write a program that reads a message from the user and performs a
Caesar cipher on its letters:

Your secret message: Brad thinks Angelina is cute

Your secret key: 3

The encoded message: eudg wklqnv dqjholqd lv fxwh

3

5

Fencepost loops

A deceptive problem...

• Write a method print_letters that prints each letter from a
word separated by commas.

For example, the call:
print_letters("Atmosphere")

should print:
A, t, m, o, s, p, h, e, r, e

6

Flawed solutions

• def print_letters(word):

for i in range(0, len(word)):

print(str(word[i]) + ", ", end="")

print() # end line

• Output: A, t, m, o, s, p, h, e, r, e,

• def print_letters(word):

for i in range(0, len(word)):

print(", " + str(word[i]), end="")

print() # end line

• Output: , A, t, m, o, s, p, h, e, r, e

7

Fence post analogy

• We print n letters but need only n - 1 commas.

• Similar to building a fence with wires separated by posts:

• If we use a flawed algorithm that repeatedly places a post + wire, the last post

will have an extra dangling wire.

for length of fence :

place a post.

place some wire.

8

Fencepost loop

• Add a statement outside the loop to place the initial "post."
• Also called a fencepost loop or a "loop-and-a-half" solution.

place a post.

for length of fence – 1:

place some wire.

place a post.

9

Fencepost method solution

• def print_letters(word):

print(word[0])

for i in range(1, len(word)):

print(", " + word[i], end="")

print() # end line

• Alternate solution: Either first or last "post" can be taken out:

def print_letters(word):

for i in range(0, len(word) - 1):

print(word[i], end=", ")

last = len(word) – 1

print(word[last]) # end line

10

Fencepost question

• Write a function print_primes that prints all prime numbers up to
a max.

• Example: print_primes(50) prints
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47

• If the maximum is less than 2, print no output.

• To help you, write a function count_factors which returns the
number of factors of a given integer.
• count_factors(20) returns 6 due to factors 1, 2, 4, 5, 10, 20.

11

Fencepost answer

Prints all prime numbers up to the given max.

def print_primes(max):

if (max >= 2):

print("2", end="")

for i in range(3, max + 1):

if (count_factors(i) == 2):

print(", " + str(i))

print()

Returns how many factors the given number has.

def count_factors(number):

count = 0

for i in range(1, number + 1):

if (number % i == 0):

count = count + 1 # i is a factor of number

return count

12

13

while loops

Categories of loops

• definite loop: Executes a known number of times.
• The for loops we have seen are definite loops.

• Print "hello" 10 times.
• Find all the prime numbers up to an integer n.
• Print each odd number between 5 and 127.

• indefinite loop: One where the number of times its body repeats is not
known in advance.

• Prompt the user until they type a non-negative number.
• Print random numbers until a prime number is printed.
• Repeat until the user has typed "q" to quit.

14

The while loop

• while loop: Repeatedly executes its
body as long as a logical test is true.

while (test):
statement(s)

• Example:

num = 1 # initialization
while (num <= 200): # test

print(str(num), end=" ")
num = num * 2 # update

output: 1 2 4 8 16 32 64 128

15

Example while loop

finds the first factor of 91, other than 1

n = 91

factor = 2

while (n % factor != 0):

factor = factor + 1

print("First factor is " + str(factor))

output: First factor is 7

• while is better than for because we don't know how many times we will
need to increment to find the factor.

16

• sentinel: A value that signals the end of user input.

• sentinel loop: Repeats until a sentinel value is seen.

• Example: Write a program that prompts the user for text until the
user types "quit", then output the total number of characters typed.
• (In this case, "quit" is the sentinel value.)

Type a word (or "quit" to exit): hello
Type a word (or "quit" to exit): yay
Type a word (or "quit" to exit): quit
You typed a total of 8 characters.

Sentinel values

17

Solution?

sum = 0

response = "dummy" # "dummy" value, anything but "quit"

while (response != "quit"):

response = input('Type a word (or "quit" to exit): ')

sum = sum + len(response)

print("You typed a total of " + str(sum) + " characters.")

• This solution produces the wrong output. Why?
You typed a total of 12 characters.

18

The problem with our code

• Our code uses a pattern like this:
sum = 0
while (input is not the sentinel) :

prompt for input; read input.
add input length to the sum.

• On the last pass, the sentinel’s length (4) is added to the sum:
prompt for input; read input ("quit").
add input length (4) to the sum.

• This is a fencepost problem.
• Must read N lines, but only sum the lengths of the first N-1.

19

A fencepost solution

sum = 0.
prompt for input; read input. # place a "post"

while (input is not the sentinel):
add input length to the sum. # place a "wire"
prompt for input; read input. # place a "post"

• Sentinel loops often utilize a fencepost "loop-and-a-half" style
solution by pulling some code out of the loop.

20

Correct code

sum = 0

pull one prompt ("fence post") out of the loop

response = input('Type a word (or "quit" to exit): ')

while (response != "quit"):

sum = sum + len(response) # moved to top of loop

response = input('Type a word (or "quit" to exit): ')

print("You typed a total of " + str(sum) + " characters.")

21

Sentinel as a constant
SENTINEL = "quit"

...

sum = 0

pull one prompt ("fence post") out of the loop

response = input('Type a word (or "' + SENTINEL + '" to exit): ')

while (response != SENTINEL):

sum = sum + len(response) # moved to top of loop

response = input('Type a word (or "' + SENTINEL + '" to exit): ')

print("You typed a total of " + str(sum) + " characters.")

22

Strings answer
This program reads a message and a secret key from the user and

encrypts the message using a Caesar cipher, shifting each letter.

def main():

message = input("Your secret message: ")

message = message.lower()

key = int(input("Your secret key: "))

encode(message, key)

This method encodes the given text string using a Caesar

cipher, shifting each letter by the given number of places.

def encode(text, shift):

print("The encoded message: ")

for letter in text:

shift only letters (leave other characters alone)

if (letter >= 'a' and letter <= 'z'):

letter = chr(ord(letter) + shift)

may need to wrap around

if (letter > 'z'):

letter = chr(ord(letter) - 26)

elif (letter < 'a'):

letter = chr(ord(letter) + 26)

print(letter, end='')

print()

23

