
CSc 110, Spring 2017
Lecture 13: Random numbers and Boolean Logic

Adapted from slides by Marty Stepp and Stuart Reges

1

Random question

• Write a program that plays an adding game.
• Ask user to solve random adding problems with 2-5 numbers.
• The numbers to add are between 1 and 10
• The user gets 1 point for a correct answer, 0 for incorrect.
• The program stops after 3 incorrect answers.

4 + 10 + 3 + 10 = 27
9 + 2 = 11
8 + 6 + 7 + 9 = 25
Wrong! The answer was 30
5 + 9 = 13
Wrong! The answer was 14
4 + 9 + 9 = 22
3 + 1 + 7 + 2 = 13
4 + 2 + 10 + 9 + 7 = 42
Wrong! The answer was 32
You earned 4 total points

2

Random answer - main

Asks the user to do adding problems and scores them.

from random import *

def main():

play until user gets 3 wrong

points = 0

wrong = 0

while (wrong < 3):

result = play() # play one game

if (result == 0):

wrong += 1

else:

points += 1

print("You earned " + str(points) + " total points.")

3

Random answer - play
Builds one addition problem and presents it to the user.

Returns 1 point if you get it right, 0 if wrong.

def play():

print the operands being added, and sum them

num_operands = randint(2, 5)

sum = randint(1, 10)

print(sum, end='')

for i in range(2, num_operands + 1):

n = randint(1, 10)

sum = sum + n

print(" + " + str(n), end='')

print(" = ", end='')

read user's guess and report whether it was correct

guess = input()

if (guess == sum):

return 1

else:

print("Wrong! The answer was " + str(total))

return 0
4

Type bool (Review)

• boolean: A logical type with only two values True and False.
• A logical test is an expression of type bool.
• As with other types, it is legal to:

• assign a bool value to a variable
• pass a bool value as a parameter
• return a bool value from function
• call a function that returns a bool value and use it as a test

minor = age < 21
isProf = name.startswith("Prof")
lovesCSE = True

allow only CS-loving students at least 21 old
if (minor or isProf or not lovesCSE):

print("Can't enter the club!")

5

Using booleans

• Why is type bool useful?
• Can capture a complex logical test result and use it later
• Can write a function that does a complex test and returns it
• Makes code more readable
• Can pass around the result of a logical test (as param/return)

low_Sodium = sodium >= 35 and sodium < 140
low_Sugar = sugar >= 5 and sugar < 12
vitamin_C = c_count >= 100 and c_count <= 350
if ((low_Sodium and low_Sugar) or vitamin_Rich):

print("Enjoy your healthy snack!")
else:

print("Eat your snack in moderation.")

6

Returning booleans

def is_prime(n):

factors = 0

for i in range(1, n + 1):

if (n % i == 0):

factors = factor + 1

if (factors == 2):

return True

else:

return False

• Calls to functions returning booleans can be used as tests:
if (is_prime(x)):

...

7

"Boolean Zen", part 1

• Students new to booleans often test if a result is True:

if (is_prime(x) == True): # bad

...

• But this is redundant. Preferred:

if (is_prime(x)): # good

...

• A similar pattern can be used for a False test:

if (is_prime(x) == False): # bad

if (not is_prime(x)): # good

8

"Boolean Zen", part 2

• Functions that return booleans often have an
if/else that returns True or False:

def both_odd(n1, n2):

if (n1 % 2 != 0 and n2 % 2 != 0):

return True

else:

return False

• Can this be shortened and improved?

9

Solution w/ variable assignment

• We could store the result of the logical test.

def both_odd(n1, n2):

test = n1 % 2 != 0 and n2 % 2 != 0

if (test): # test == True

return True

else: # test == False

return False

• Notice: Whatever test is, we want to return that.

• If test is True, we want to return True.

• If test is False, we want to return False.

10

Solution w/ "Boolean Zen"

• Observation: The if/else is unnecessary.
• The variable test is assigned a value of type bool;

its value is exactly what you want to return. So return that!

def both_odd(n1, n2):

test = n1 % 2 != 0 and n2 % 2 != 0

return test

• An even shorter version:
• We don't even need the variable test.

We can just perform the test and return its result in one step.

def both_odd(n1, n2):

return n1 % 2 != 0 and n2 % 2 != 0

11

"Boolean Zen" template

• Replace
def name(parameters):

……

if (test):
return True

else:

return False

•with
def name(parameters):

……

return test

12

Improve the is_prime function

• How can we fix this code?
def is_prime(n):

factors = 0

for i in range(1, n + 1):

if (n % i == 0):

factors = factors + 1

if (factors == 2):

return True

else:

return False

13

Logic Question

• Consider the statement:

• It is not true that he took Art History and Physics 101

• Is this an equivalent statement?

• He did not take Art History or he did not take Physics 101

14

De Morgan's Laws

• De Morgan's Laws: Rules used to negate boolean tests involving and
and or.
• Useful when you want the opposite of an existing test.

• Example:

Original Expression Negated Expression Alternative

a and b not a or not b not(a and b)

a or b not a and not b not(a or b)

Original Code Negated Code
if (x == 7 and y > 3):

...

If not(x == 7 and y > 3):

if (x =! 7 or y <= 3):

15

Boolean practice questions
• Write a function is_vowel(c) that returns True if the 1

character string c is a vowel (a, e, i, o, or u) or False otherwise.
Ignore case.
• is_vowel("q") returns False

• is_vowel("A") returns True

• is_vowel("e") returns True

• Change the above function into is_non_vowel(c) that returns
True if c is any character except a vowel and False otherwise.
• is_non_vowel("q") returns True

• is_non_vowel("A") returns False

• is_non_vowel("e") returns False

16

Boolean practice answers

Enlightened version. I have seen the true way (and false way)

def is_vowel(c):

c = c.lower() # allows testing for only lower case

return c == 'a' or c == 'e' or c =='i' or c == 'o' or c == 'u'

Enlightened "Boolean Zen" version

def is_non_vowel(c):

c = c.lower()

return not(c == 'a' or c == 'e' or c =='i' or c == 'o' or c == 'u')

or, return not is_vowel(c)

17

When to return?

• Consider a function with a loop and a return value:
• When and where should the function return its result?

• Write a function seven that uses randint to draw up to ten lotto
numbers from 1-30.

• If any of the numbers is a lucky 7, the function should immediately return
True. If none of the ten are 7 it should return False.

• The function should print each number as it is drawn.

15 29 18 29 11 3 30 17 19 22 (first call)
29 5 29 4 7 (second call)

18

Flawed solution

Draws 10 lotto numbers; returns True if one is 7.

def seven():

for i in range(1, 11):

num = randint(1, 30)

print(str(num) + " ", end='')

if (num == 7):

return True;

else:

return False;

• The function always returns immediately after the first draw.

• If the draw isn't a 7, we need to keep drawing (up to 10 times).

19

Returning at the right time

Draws 10 lotto numbers; returns True if one is 7.

def seven():

for i in range(1, 11):

num = randint(1, 30)

print(str(num) + " ", end='')

if (num == 7): # found lucky 7; can exit now

return True

return False # if we get here, there was no 7

• Returns True immediately if 7 is found.

• If 7 isn't found, the loop continues drawing lotto numbers.

• If all ten aren't 7, the loop ends and we return False.

20

Sidebar…

• Write a function digit_sum(n) that accepts an integer parameter
and returns the sum of its digits.

• Assume that the number is non-negative.

• Example: digit_sum(29107) returns 19

(19 is the sum of 2+9+1+0+7)

• Hint: Use the % operator to extract a digit from a number.

• Hint: Use the // operator to remove the last digit

21

Summing digits answer

def digit_sum(n):

sum = 0

while (n > 0):

sum = sum + (n % 10) # add last digit to sum

n = n // 10 # remove last digit from n

return sum

22

Boolean return questions

• has_an_odd_digit : returns True if any digit of an integer is odd.

• has_an_odd_digit(4822116) returns True
• has_an_odd_digit(2448) returns False

• all_digits_odd : returns True if every digit of an integer is odd.

• all_digits_odd(135319) returns True
• all_digits_odd(9174529) returns False

• is_all_vowels : returns True if every char in a string is a vowel.

• is_all_vowels("eIeIo") returns True
• is_all_vowels("oink") returns False

23

Boolean return answers

def has_an_odd_digit(n):
while (n != 0):

if (n % 2 != 0): # check whether last digit is odd
return True

n = n // 10
return False

def all_digits_odd(n):
while (n != 0) :

if (n % 2 == 0): # check whether last digit is even
return False

n = n // 10
return True

def is_all_vowels(s):
for i in range(0, len(s)):

letter = s[i: i + 1]
if (not is_vowel(letter)):

return False
return True

24

