
CSc 110, Spring 2017
Lecture 18: Line-Based File Input

Adapted from slides by Marty Stepp and Stuart Reges

Programming feel like that?
1

IMDb movies problem

• Consider the following Internet Movie Database (IMDb) data:

1 9.1 196376 The Shawshank Redemption (1994)

2 9.0 139085 The Godfather: Part II (1974)

3 8.8 81507 Casablanca (1942)

• Write a program that displays any movies containing a phrase:

Search word? part

Rank Votes Rating Title

2 139085 9.0 The Godfather: Part II (1974)

40 129172 8.5 The Departed (2006)

95 20401 8.2 The Apartment (1960)

192 30587 8.0 Spartacus (1960)

4 matches

Note: the file is imdb.txt

2

Pseudocode
ask the user for a search word
open the IMDb data file
create a list of the files contents
if search word is in the list of files contents

print the header for the output
set matches counter
for each line in the list

if the search word is in the line
increment the matches counter
print the line in the proper format

print the number of matches

3

1 9.1 196376 The Shawshank Redemption (1994
2 9.0 139085 The Godfather: Part II (1974)
3 8.8 81507 Casablanca (1942)

Rank Votes Rating Title
2 139085 9.0 The Godfather: …

Functions for imdb

Start with these:

get_phrase()

- use input() as usual

- returns a string

search_list(line_list, search_word)

- searches line_list to find search_word

- if finds search_word, returns the line

- if no match found, returns an empty string

We want to put in debugging prints statements

We want to know the structure of imdb.txt

(Let's take a look at it before writing the code.)
4

Remaining functions for imdb

search_line(line, search_word)

- searches string line to find search_word

- if finds search_word, returns the line

- if no match found, returns an empty string

5

Remaining functions for imdb

display(line)

- line is a string

A string in line looks like this:

'2 9.0 139085 The Godfather: Part II (1974)'

The structure of the output is:

Rank Votes Rating Title

2 139085 9.0 The Godfather: Part II (1974)

What does the method split() do?

-creates a list from a string

-by default uses whitespace (thiink spaces) to delimit
the elements 6

Helpful strategies

• Use print statements for debugging

• Make your input file small to start with

• Know the structure of your input file

• Review the methods and functions for lists and strings

7

IMDb main
Displays IMDB's Top 250 movies that match a search string.

def main():

search_word = get_phrase()

file = open("imdb.txt")

line_list = file.readlines()

line = search_list(line_list, search_word)

if (len(line) > 0):

print("Rank\tVotes\tRating\tTitle")

matches = 0

for a_line in line_list:

ans = search_line(a_line, search_word)

if (len(ans) > 0):

matches = matches + 1

display(a_line)

print(str(matches) + " matches.")

Asks the user for their search word and returns it.

def get_phrase():

search_word = input("Search word: ")

search_word = search_word.lower()

print()

return search_word

...

8

IMDb functions
...

Searches a list of lines for a line that match the search word.

def search_list(line_list, search_word):

for line in line_list:

line_lower = line.lower() # case-insensitive match

if (search_word in line_lower):

return line

return "" # not found

Looks for the search word in a single line.

def search_line(line, search_word):

line_lower = line.lower() # case-insensitive match

if (search_word in line_lower):

return line

return "" # not found

displays the line in the proper format on the screen.

def display(line):

parts = line.split()

rank = parts[0]

rating = parts[1]

votes = parts[2]

title = ""

for i in range(3, len(parts)):

title = title + parts[i] + " " # the rest of the line

print(rank + "\t" + votes + "\t" + rating + "\t" + title)

9

"Chaining"
• main should be a concise summary of your program.

• It is bad if each function calls the next in a nested structure (we
call this chaining):

• A better structure has main make most of the calls.
• Functions must return values to main to be passed on later.

main
functionA

functionB
functionC

functionD

main
functionA

functionB
functionD

functionD

10

File output

11

Output to files

• Open a file in write or append mode

• 'w' - write mode – replaces everything in the file

• 'a' – append mode – adds to the bottom of the file

preserving what is already in it

name = open("filename", "w") # write

name = open("filename", "a") # append

12

Output to files

name.write(str) - writes the given string to the file

name.close() - closes file once writing is done

Example:

out = open("output.txt", "w")

out.write("Hello, world!\n")

out.write("How are you?")

out.close()

text = open("output.txt").read()

Hello, world!\nHow are you?

13

Removing short words

• Write a program that reads a file, writes the file
contents , and then creates a new file containing only
the words greater than 3 characters.

14

Removing short words
def main():

file = open("poem.txt")

text = file.read()

print(text)

outfile = open("nosmallwords.txt", "w")

text = text.split()

for word in text:

if len(word) > 3:

print(word)

outfile.write(word)

outfile.close()

main()

15

