
CSc 110, Spring 2017
Lecture 19: more with lists

Adapted from slides by Marty Stepp and Stuart Reges

1

"Programs must be written for people to read, and only
incidentally for machines to execute."

Abelson and Sussman,
Structure and Interpretation of Programs

2

Commenting Code

Comments are required for homework as follows:
- at the top of the program file
- before each function
- within a function when needed to clarify a point (see below)

Continue to loop until the user guesses the correct answer,
giving a clue each time
while (guess != correct_answer):

if (guess < correct_answer):
print("It's higher.")

else:
print("It's lower.")

3

Lists and assignment
• Consider the following code:

a1 = [4, 15, 8]

a2 = a1 # a2 now refers to same list as a1

a2[0] = 7

print(a1) # [7, 15, 8]

index 0 1 2

value 4 15 8

index 0 1 2

value 7 15 8a1 a2

4

Reference semantics
• When a type has reference semantics, a variable holds a reference to

a value rather than the value itself. Lists have reference semantics.

• Assigning a list to a variable causes the variable to hold a reference to the list

• Modifying a list element referenced by one variable will affect any other
variables referencing the same list.

a1 = [4, 15, 8]

a2 = a1 # a2 now refers to same list as a1

a2[0] = 7

print(a1) # [7, 15, 8]

index 0 1 2

value 4 15 8

index 0 1 2

value 7 15 8a1 a2

5

Consider the following interaction with Idle:

>>> a = [3, 7, 24]

>>> b = a

>>> print(b)

[3, 7, 24]

>>> b[0] = 88

>>> print(a)

[88, 7, 24]

>>> a[2] = 999

>>> print(b)

[88, 7, 999]

>>> a = [10, 20, 30]

>>> print(b)

[88, 7, 999]
6

Reference semantics
vs.

Value semantics

7
7

Value semantics

• When a type has value semantics, a variable holds a copy of a value.

• ints, floats, strings and booleans in Python use value semantics.
• When an int, float, string, or boolean value is assigned to a variable, its value

is copied into memory set aside for the variable.
• Assignment doesn't produces any sharing of data.
• Modifying the value of one variable does not affect others.

x = 5

y = x

y = 17

x = 8

8

Integers as parameters
• Function square squares its parameter.

def square(x):

x = x * x

• The value of variable a (of type int) is passed as an argument.

def main():

a = 7

can variable a be modified?

square(a)

print(str(a))

The variable a cannot be modified by square.
9

Lists as parameters

• Reference semantics apply not only to assignment but also to parameter
passing.
• Changes made in the function are also seen by the caller.

def main():
iq = [126, 167, 95]
double_all(iq)
print(iq)

def double_all(a):
for i in range(0, len(a)):

a[i] = a[i] * 2

• Output:
[252, 334, 190]

index 0 1 2

value 126 167 95

index 0 1 2

value 252 334 190

iq

a

10

Objects as parameters
• Objects use reference semantics; the object is not copied. The

parameter refers to the same object.
• If the parameter is modified, it will affect the original object.

def main():

window = DrawingPanel(80, 50)

window.canvas.create_rectangle(0, 0, 80, 50, fill="yellow")

example(window)

def example(panel):

panel.canvas.create_rectangle(0, 0, 80, 50, fill="cyan")

...

panel

window

11

Why reference semantics?

• Reference semantics.
• sharing. It's useful to share an object's data among functions and methods.

• efficiency. Copying large amounts of data can be inefficient.

f = open("population_data.txt")

data = f.readlines() # data could be very large

process(data) # a reference to data is passed in

…

12

absolute_all

• Write a function absolute_all that accepts a list of integers and
modifies it so that all its values are positive.

a = [-2, 15, 25, -106]

absolute_all(a)

print(a) # [2, 15, 25, 106]

13

absolute_all

Changes all values of the list to

positive numbers.

def absolute_all(x):

for i in range(0, len(x)):

x[i] = abs(x[i])

14

rotate

• Write a function rotate that takes a list and rotates the first
element to the end of the list

a = [10, 20, 30, 40]

rotate(a)

print(a) # [20, 30, 40, 10]

• Hint: Use list's append() method.
•

15

rotate

Rotates the list a by putting its first

element at the end of the list.

def rotate(x):

element = x.pop(0)

x.append(element)

16

Problem: concat

• Write a function concat that accepts two lists and returns a new list
containing all elements of the first list followed by all elements of the
second.

• Note that this function returns a new list.

a1 = [12, 34, 56]

a2 = [7, 8, 9, 10]

a3 = concat(a1, a2)

print(a3)

[12, 34, 56, 7, 8, 9, 10]

17

concat: v1

Returns a new list containing all elements of x
followed by all elements of y.
def concat(x, y):

result = [0] * (len(x) + len(y))

for i in range(0, len(x)):

result[i] = x[i]

for i in range(0, len(y)):

result[len(x) + i] = y[i]

return result

Question: Can we make this simpler?

18

concat: v2

Returns a new list containing all elements of x

followed by all elements of y.

def concat(x, y):

result = []

for item in x:

result.append(item)

for item in y:

result.append(item)

return result

19

Problem: concat3

• Write a function concat3 that concatenates three lists similarly.

a1 = [12, 34, 56]

a2 = [7, 8, 9, 10]

a3 = [444, 222, -1]

print(concat3(a1, a2, a3))

[12, 34, 56, 7, 8, 9, 10, 444, 222, -1]

20

concat3: v1 and v2
Returns a new list containing all elements of x, y, and z.

def concat3(x, y, z):

result = []

for item in x:

result.append(item)

for item in y:

result.append(item)

for item in z:

result.append(item)

return result

Shorter version that calls concat.

def concat3(a1, a2, a3):

return concat(concat(a1, a2), a3)

21

"When you hit a problem, you can lean
forward and type or sit back and think."
-- Dr. Proebsting

List reversal question

• Write a function that reverses the elements of a list.

• For example, if the list initially is this:

[11, 42, -5, 27, 0, 89]

• Then the list becomes:

[89, 0, 27, -5, 42, 11]

• Hint: think about swapping various elements...

22

Algorithm idea

• Swap pairs of elements from the edges; work inwards:

index 0 1 2 3 4 5

value 11 42 -5 27 0 89

index 0 1 2 3 4 5

value 89 42 -5 27 0 11

index 0 1 2 3 4 5

value 89 0 -5 27 42 11

index 0 1 2 3 4 5

value 89 0 27 -5 42 11

23

Swapping values

a = 7
b = 35

swap a with b?
a = b
b = a

print(str(a) + " " + str(b))

• What is wrong with this code? What is its output?

• The red code should be replaced with:
temp = a
a = b
b = temp

24

Flawed algorithm

• What's wrong with this code?

numbers = [11, 42, -5, 27, 0, 89]

reverse the list

for i in range(0, len(numbers)):

temp = numbers[i]

numbers[i] = numbers[len(numbers) - 1 - i]

numbers[len(numbers) - 1 - i] = temp

• The loop goes too far and un-reverses the array! Fixed version:

for i in range(0, len(numbers) // 2):

temp = numbers[i]

numbers[i] = numbers[len(numbers) - 1 - i]

numbers[len(numbers) - 1 - i] = temp

25

reverse

• reverse – takes a list as a parameter and reverses it

numbers = [11, 42, -5, 27, 0, 89]

reverse(numbers)

• Solution:
def reverse(numbers):

for i in range(0, len(numbers) // 2):

temp = numbers[i]

numbers[i] = numbers[len(numbers) - 1 - i]

numbers[len(numbers) - 1 - i] = temp

26

