CSc 110, Spring 2017/

Lecture 19: more with lists
Adapted from slides by Marty Stepp and Stuart Reges

-
"Programs must be written for people to read, and only

incidentally for machines to execute."

Abelson and Sussman,
Structure and Interpretation of Programs

Commenting Code

Comments are required for homework as follows:
- at the top of the program file
- before each function
- within a function when needed to clarify a point (see below)

Continue to loop until the user guesses the correct answer,
giving a clue each time
while (guess != correct_answer):
if (guess < correct_answer):
print("It's higher.")
else:
print("It's lower.")

Lists and assignment

* Consider the following code:

al = [4, 15, 8]

a2z = al # a2 now refers to same list as al
a2[0] = 7

print (al) ¥ [7, 15, 8]

index 0 1 2

aIO > value| 7 |15] 8) Oaz

Reference semantics

* When a type has reference semantics, a variable holds a reference to
a value rather than the value itself. Lists have reference semantics.

* Assigning a list to a variable causes the variable to hold a reference to the list

* Modifying a list element referenced by one variable will affect any other
variables referencing the same list.

al = [4, 15, 8]

a2 = al # a2 now refers to same list as al
a2[0] = 7

print (al) ¥ [7, 15, 8]

index 0 1 2

alO > value| 7 |15] 8) Oaz

Consider the following interaction with Idle:

>>> a = [3, 7, 24]

[3, 7, 24]

>>> b[0] = 88

>>> print (a)

(88, 7, 24]

>>> al[2] = 999

>>> print (b)

(88, 7, 999]

>>> a = [10, 20, 30]

>>> print (b)
188, 7, 999]

Reference semantics
VS.
Value semantics

Value semantics

 When a type has value semantics, a variable holds a copy of a value.

* ints, floats, strings and booleans in Python use value semantics.

* When an int, float, string, or boolean value is assigned to a variable, its value
is copied into memory set aside for the variable.

* Assignment doesn't produces any sharing of data.
* Modifying the value of one variable does not affect others.

KR X
Il
= X
~J

Integers as parameters

* Function square squares its parameter.

def square (x) :
X = X * X

* The value of variable a (of type int) is passed as an argument.

def main () :
a = 7/

can variable a be modified?
square (a)

print (str(a))

The variable a cannot be modified by square.

Lists as parameters

* Reference semantics apply not only to assignment but also to parameter
passing.

* Changes made in the function are also seen by the caller.

def main():

iq = [126, 167, 95] .
double all (iq) 'q
print (19)

def double all(a):

for 1 1in range(O, len(a)) :
ali] = al[1] * 2

* Qutput:

[252,

334,

190]

index

a O—» value

0

252

334

190

Objects as parameters

* Objects use reference semantics; the object is not copied. The
parameter refers to the same object.

* If the parameter is modified, it will affect the original object.

def main () :
window = DrawingPanel (80, 50)
window.canvas.create rectangle(0, 0, 80, 50, fill="yellow")
example (window)
window
def example (panel) :
panel.canvas.create rectangle(0, 0, 80, 50, fill="cyan")

panel O

® 0 O CsE..

Why reference semantics?

* Reference semantics.
* sharing. It's useful to share an object's data among functions and methods.
* efficiency. Copying large amounts of data can be inefficient.

f = open("population data.txt")
data = f.readlines|() # data could be very large

process (data) # a reference to data is passed in

e
absolute all

* Write a function absolute all that accepts a list of integers and
modifies it so that all its values are positive.

a = [-2, 15, 25, -100]
absolute all (a)
print (a) ¥ [2, 15, 25, 106]

13

——
absolute all

Changes all values of the list to
positive numbers.
def absolute all (x):

for 1 1n range (0, len(x)):
x[1] = abs(x[1])

14

-
rotate

e Write a function rotate that takes a list and rotates the first
element to the end of the list

a = [10, 20, 30, 40]
rotate (a)
print (a) # [20, 30, 40, 10]

* Hint: Use list's append () method.

15

rotate

Rotates the list a by putting its first

element at the end of the 1list.

def rotate(x) :
element = x.pop (0)
X .append (element)

16

Problem: concat

* Write a function concat that accepts two lists and returns a new list
containing all elements of the first list followed by all elements of the
second.

 Note that this function returns a new list.

al = [12, 34, 506]
a2 = [7, 8, 9, 10]

a3 = concat(al, a2)
print (a3)
[12, 34, 56, 7, 8, 9, 10]

concat: vl

Returns a new list containing all elements of x
followed by all elements of y.
def concat(x, vy):

result = [0] * (len(x) + len(y))

for 1 1n range (0, len(x)):
result[i] = x[1]

for 1 1n range (0, len(y)):
result[len(x) + i] = vy [i]

return result

Question: Can we make this simpler?

concat:v’Z

Returns a new list containing all elements of x
followed by all elements of y.
def concat(x, vy):

result = []

for item 1in Xx:
result.append (i1tem)

for item 1in vy:
result.append(i1tem)

return result

Problem: concat3

* Write a function concat3 that concatenates three lists similarly.

al = [12, 34, 56]

a2 = [7, 8, 9, 10]

a3 = [444, 222, -1]

print (concat3(al, a2, a3))

[12, 34, 56, 7, 8, 9, 10, 444, 222, -1]

20

concat3: vl and v2

Returns a new list containing all elements of x, y, and z.
def concat3(x, vy, 2z):

result = []
for item in x:

result.append (item)
for item in vy:

result.append (item)
for item in z:

result.append (item) "When you hit a problem, you can lean
return result forward and type or sit back and think."
-- Dr. Proebsting

Shorter version that calls concat.
def concat3(al, a2z, a3):
return concat(concat(al, a2), a3)

21

List reversal guestion

* Write a function that reverses the elements of a list.

* For example, if the list initially is this:
(11, 42, -5, 27, 0, 89]

* Then the list becomes:
(89, 0, 27, -5, 42, 11]

e Hint: think about swapping various elements...

22

e
Algorithm idea

* Swap pairs of elements from the edges; work inwards:

index O 1 2 3 4 5
value | 89 27 | -5 142 | 11

TTTTTT

23

Swapping values

a = 7/

b = 35

swap a with b?

a=>,

b = a

print (str(a) + " " + str (b))

 What is wrong with this code? What is its output?

* The red code should be replaced with:

temp = a
a=>,
b = temp

24

Flawed algorithm

* What's wrong with this code?
numbers = [11, 42, -5, 27, 0, 89]

reverse the list
for 1 in range (0, len (numbers)):

temp = numbers[i1]
numbers[i] = numbers[len (numbers) - 1 - 1]
numbers[len (numbers) - 1 - 1] = temp

* The loop goes too far and un-reverses the array! Fixed version:

for 1 in range (0, len (numbers) // 2):

temp = numbers[i]
numbers[i] = numbers[len (numbers) - 1 - 1]
numbers[len (numbers) - 1 - 1] = temp

25

reverse

* reverse — takes a list as a parameter and reverses it

numbers = [11, 42, -5, 27, 0, 89]
reverse (numbers)

 Solution:
def reverse (numbers) :
for i in range (0, len (numbers) // 2):
temp = numbers[1i]
numbers[i] = numbers|[len (numbers) - 1 - 1]
numbers[len (numbers) - 1 - 1] = temp

26

