
CSc 110, Spring 2017
Lecture 20: Lists for Tallying; Text Processing

Adapted from slides by Marty Stepp and Stuart Reges

1

Value/Reference Semantics - Review
 Variables of type int, float, boolean, store values directly:

 Values are copied from one variable to another:
cats = age

 Variables of other types (like lists) store references to memory:

 References are copied from one variable to another:
scores = grades

index 0 1 2

value 89 78 93

age 20 cats 3

age 20 cats 20

grades

scores
2

Lists for Tallying

3

Extracting digits
• Given a number, how do we extract the digits one at a time? Ex: 590823

• Hint: use % and //

>>> n = 590823

>>> n % 10

3

>>> n = n // 10

>>> n

59082

>>> n % 10

2

>>> n = n // 10

>>> n

5908

>>> n % 10

8

>>>
4

A tallying problem

• Problem: Write a function most_frequent_digit(n) that
returns the digit of a number n that occurs most frequently.

• Example: the number 669260267 contains:
one 0, two 2s, four 6s, one 7, and one 9.

most_frequent_digit(669260267) returns 6.

• If there is a tie, return the digit with the lower value.

most_frequent_digit(57135203) returns 3.

5

A tallying problem
• This is well-suited for a list.

• Note that there are 10 digits. Consider a list of 10 elements.

• The value at index i holds the number of occurrences of digit i

• Example for 669260267:

index 0 1 2 3 4 5 6 7 8 9

value

6

Creating a list of tallies

assume n = 669260267

counts = [0] * 10

while (n > 0):

pluck off a digit and add to its counter

digit = n % 10

counts[digit] = counts[digit] + 1

n = n // 10

index 0 1 2 3 4 5 6 7 8 9

value 1 0 2 0 0 0 4 1 0 1

7

Tally solution
Returns the digit value that occurs most frequently in n.

Breaks ties by choosing the smaller value.

def most_frequent_digit(n):

counts = [0] * 10

while (n > 0):

digit = n % 10 # pluck off a digit and tally it

counts[digit] = count[digit] + 1

n = n // 10

find the most frequently occurring digit

best_index = 0

for i in range(1, len(counts)):

if (counts[i] > counts[best_index]):

best_index = i

return best_index

8

Data transformations

• In many problems we transform data between forms.
• Example: digits count of each digit most frequent digit

• A transformation is computed/stored as a list.

• Sometimes we map between data and list indexes.
• tally (if digit is i, store its count at index i)

• The problem structure affects the mapping

9

Section attendance question

• Read a file of section attendance (see next slide for structure):

• And produce the following output:

Section 1

Student points: [20, 16, 17, 14, 11]

Student grades: [100.0, 80.0, 85.0, 70.0, 55.0]

Section 2

Student points: [16, 19, 14, 14, 8]

Student grades: [80.0, 95.0, 70.0, 70.0, 40.0]

Section 3

Student points: [16, 15, 16, 18, 14]

Student grades: [80.0, 75.0, 80.0, 90.0, 70.0]

• Students earn 3 points for each section attended up to 20.
10

• Each line represents 9 weeks of attendance data for a section.

• Each week has 5 characters because there are 5 students in all sections.

• Within each week, each character represents one student's attendance:

• a means the student was absent (+0 points)

• n means they attended but didn't do the problems (+2 points)

• y means they attended and did the problems (+3 points)

Section input file

yynyyynayayynyyyayanyyyaynayyayyanayyyanyayna

ayyanyyyyayanaayyanayyyananayayaynyayayynynya

yyayaynyyayyanynnyyyayyanayaynannnyyayyayayny

week 1 2 3 4 5 6 7 8 9

student 123451234512345123451234512345123451234512345

section 1

section 2

section 3

11

Section input file (fragment)
• Look at 2 weeks of one section (one line of the file):

• For index i, a student is i % 5.
Student 1 Student 2 Student 3 Student 4 Student 5

0 % 5 1 % 5 2 % 5 3 % 5 4 % 5
5 % 5 6 % 5 7 % 5 8 % 5 9 % 5

Need a list of length 5 to calculate the cumulative points for each
student

student

index

1

0

2

1

3

2

4

3

5

4

1

5

2

6

3

7

4

8

5

9

value y y n y y y n a y a

12

Get the points for each student of a section

#Computes points earned for each student in a particular section.
def count_points(line):

points = [0] * 5
for i in range(0, len(line)):

student = i % 5
earned = 0
if (line[i] == 'y'): # values are 'y', 'n' or 'a'

earned = 3
elif (line[i] == 'n'):

earned = 2
points[student] = points[student] + earned)

return points

Note: fix the code to cap the points earned

13

Section Attendance - Answer
This program reads a file representing which students attended
which discussion sections and produces output of the students'
section attendance and scores.

def main():

file = open("sections.txt")

lines = file.readlines()

section = 1

for line in lines:

process one section

points = count_points(line)

grades = compute_grades(points)

results(section, points, grades)

section += 1

Produces all output about a particular section.

def results(section, points, grades):

print("Section " + str(section))

print("Student scores: " + str(points))

print("Student grades: " + str(grades))

print()

...

14

Section Attendance - answer
...

Computes the points earned for each student for a particular section.
def count_points(line):

points = [0] * 5
for i in range(0, len(line)):

student = i % 5
earned = 0
if (line[i] == 'y'): #values are 'y', 'n' or 'a'

earned = 3
elif (line[i] == 'n'):

earned = 2
points[student] = min(20, points[student] + earned)

return points

Computes the percentage for each student for a particular section.
def compute_grades(points):

grades = [0] * 5
for i in range(0, len(points)):

grades[i] = 100.0 * points[i] / 20
return grades

15

