
CSc 110, Spring 2017
Lecture 23: Tuples

Adapted from slides by Marty Stepp and Stuart Reges

1



A programming problem

• Given a file of cities' names and (x, y) coordinates:

Winslow 50 20
Tucson 90 60
Phoenix 10 72
Bisbee 74 98
Yuma 5 136
Page 150 91

• Write a program to draw the cities on a DrawingPanel, then simulates an 
earthquake that turns all cities red that are within a given radius:

Epicenter x? 100
Epicenter y? 100
Affected radius? 75

2



A poor solution

lines = open("cities.txt").readlines()

names = [0] * len(lines)

x_coords = [0] * len(lines)

y_coords = [0] * len(lines)

for i in range(0, len(lines)):

parts = lines[i].split()

names[i] = parts[0] # city name

x_coords[i] = parts[1]

y_coords[i] = parts[2]

...

• What's bad about this solution?

3



A poor solution

names[i] = parts[0] # city name

x_coords[i] = parts[1]

y_coords[i] = parts[2]

...

• Parallel lists: two or more lists with related data at the same indices.

• Parallel lists can easily lead to bugs:

• may get "out of sync" if you add an x-coordinate but not a y-coordinate

• Would have to pass all three lists as parameters to a function.

• Is there a better representation?

4



Observations
• Each item in the data set is a name, an x-coordinate and y-coordinate 

for a given city

Winslow 50 20

• It would be better to associate these values

5



Tuples

Good for associating a fixed number of items

Syntax for creating a tuple:

(value0, value1, … ,valueN)

Example:

("Tucson", 90, 60)

Tuples can be subscripted just like lists and strings:

>>> t = ("Tucson", 90, 60)

>>> t

('Tucson', 90, 60)

>>> t[0]

'Tucson'

6



Tuples vs. lists
• Tuples

• tuples hold a fixed number of items
• the items in a tuple cannot be assigned to

>>> t = ("Tucson", 90, 60)

>>> t

('Tucson', 90, 60)

>>> t[0] = "OldPueblo"

…

TypeError: 'tuple' object does not support item assignment

• Lists
• lists may grow or shrink
• the items in a list can be assigned to
• typically a list holds values of the same type (e.g., all integers or all strings)

7



Using tuples

• As mentioned, tuples are subscripted just like lists and strings
t = ("Tucson", 90, 60)

x_coord = t[1]

• You can loop through tuples

the same as lists and strings

operation call result

len() len((1, 2, 3)) 3

+ (1, 2, 3) + 

(4, 5, 6)

(1, 2, 3, 4, 5, 6)

* ('Hi', 1) * 2 ('Hi', 1, 'Hi', 1)

in 3 in (1, 2, 3) True

for for x in (1,2,3): 

print(x)

1

2

3

min() min((1, 3)) 1

max() max((1, 3)) 3

8



Using tuples
>>> book = ("Pride and Prejudice", "Austin", 1813, "Fiction")

>>> book

('Pride and Prejudice', 'Austin', 1813, 'Fiction')

>>> len(book)

4

>>> "Fiction" in  book

True

>>> for item in book:

print(item)

Pride and Prejudice

Austin

1813

Fiction

>>> 
9



Zipval

• Write a function called zipval(lst, value) that take a list and value 
as parameters and returns a list of tuples consisting of each element of the 
list and the value

call return

zipval([10,20,30], "a")      [(10,'a'), (20,'a'), (30, 'a'])

10



Zip

• Write a function called zip(a, b) that takes two lists as parameters 
and returns a list of tuples. Each tuple consists of the paired consecutive 
values of the parameter lists.

call return

zip([1,2,3],[4,5,6])             [(1,4), (2,5), (3, 6)]

11



A programming problem

• Given a file of cities' names and (x, y) coordinates:

Winslow 50 20
Tucson 90 60
Phoenix 10 72
Bisbee 74 98
Yuma 5 136
Page 150 91

• Write a program to draw the cities on a DrawingPanel, then simulates an 
earthquake that turns all cities red that are within a given radius:

Epicenter x? 100
Epicenter y? 100
Affected radius? 75

12



Earthquake  plot 
# Draws all of the cities affected by earthquakes 

# given the radius input by the user.

from drawingpanel import *

def main():

cities = get_cities()

# gets information from the user

epi_x = int(input("Epicenter x? "))

epi_y = int(input("Epicenter y? "))

radius = int(input("Radius? "))

draw(cities, epi_x, epi_y, radius)

...      

13



Earthquake  plot – cont.

Let's write get_cities().

First step is the pseudocode.

Open the file cities.txt

Read all the lines from the file

For each line of the file

create a tuple of the city and the x and y coordinates

add that tuple to a list

return the list

14



Earthquake  plot – cont.
# Returns a list of tuples. Each tuple contains a city name, x and y

# coordinates from one line of cities.txt

def get_cities():

file = open("cities.txt")

lines = file.readlines()

cities = []

for line in lines: # format: 'Tucson, 60, 90'

parts = line.split()

city = (parts[0], parts[1], parts[2])

cities.append(city)

return cities

15



Earthquake  plot – cont.
# Draws all of the cities as dots on a DrawingPanel. If in

# the affected radius, colors them red, otherwise black.

# Draws a circle around the affected region.

def draw(cities, epi_x, epi_y, radius):

p = DrawingPanel(400, 400)

p.canvas.create_oval(epi_x - radius, epi_y - radius, 

epi_x + radius, epi_y + radius)

for city in cities:      # the variable city is a tuple

x = int(city[1]) # get x-coordinate

y = int(city[2]) # get y-coordinate

color = "black"

if(x >= epi_x - radius and x <= epi_x + radius and

y >= epi_y - radius and y <= epi_y + radius):

color = "red"

p.canvas.create_oval(x, y, x + 4, y + 4, outline=color)

…
16



Days till

• Write a function called days_till that accepts a start month and 
day and a stop month and day and returns the number of days 
between them

call return

days_till("januAry", 1, "January", 10)      9

days_till("novembeR", 15, "december", 10)     25

days_till("OCTober", 6, "december", 17)       72

days_till("october", 6, "ocTober", 1)         360 

17



Days till solution
def days_till(start_month, start_day, stop_month, stop_day):

months = [('january', 31),('february', 28),('march', 31),('april', 30), ('may', 31),('june', 30),

('july', 31), ('august', 31),('september', 30), ('october', 31), ('november', 30), ('december', 31)]

if start_month.lower() == stop_month.lower() and stop_day >= start_day:

return stop_day - start_day

days = 0

for i in range(0, len(months)):

month = months[i]

if month[0] == start_month.lower():

days = month[1] - start_day

i += 1

while months[i % 12][0] != stop_month.lower():

days += months[i % 12][1]

i += 1

days += stop_day

return days

18


