CSc 110, Spring 2017

Lecture 23: Tuples
Adapted from slides by Marty Stepp and Stuart Reges

KEEP IN [MIND THAT TM
SELF-TRUGHT, 90 MY CODE
MAY BE A LITLE MESSY,

LEMYE SEE-
T'™M SURE
IT% FINE.

N

.. \JOL,

[
THIS 15 LIKE BEING IN
A HOUSE BUILT By A
CHILD USING NOTHING
BUT A HATCHET AND A
PICTURE OF A HOUSE.

(

IT'S LIKE A SALAP RECIPE
WRITTEN BY A CORPORATE
LAWYER DSING A PHONE
AUTOCORRELT THAT ONLY
KNEW EXCEL FORMULAS,

(

ITS LIKE SOMEONE TOOK A
TRANSCRIPT OF A COUPLE
ARGUING AT IKEA AND MADE
RANDOM EDITS UNTIL IT
COMPILED \ITHOUT ERRORS.
K OKAY’ TLL READ
ﬁsrﬂ?me

- || x|

A programming problem File View Help

(a0, 209

» Given a file of cities' names and (x, y) coordinates:

Winslow 50 20
Tucson 90 60
Phoenix 10 72
Bisbee 74 98
Yuma 5 136
Page 150 91

(5, 186)

104723

(90, 60)

{74 98) (150, 91)

(0, 0)

* Write a program to draw the cities on a DrawingPanel, then simulates an

earthquake that turns all cities red that are within a given radius:

Epicenter x? 100
Epicenter y? 100
Affected radius? 75

A poor solution

lines = open("citiles.txt") .readlines ()
names = [0] * len(lines)

X coords = [0] * len(lines)

y coords = [0] * len(lines)

for 1 1n range (0, len(lines)):
parts = lines[1].split ()
names[i] = parts[0] # city name
X coords[i] = parts[l]
y _coords[i] = parts[2]

e What's bad about this solution?

A poor solution

names[i] = parts[0] # city name
X coords[i] = parts[l]
y _coords[i] = parts[2]

Parallel lists: two or more lists with related data at the same indices.
Parallel lists can easily lead to bugs:

* may get "out of sync" if you add an x-coordinate but not a y-coordinate
Would have to pass all three lists as parameters to a function.
Is there a better representation?

Observations

* Each item in the data set is a name, an x-coordinate and y-coordinate

for a given city ol
Winslow 50 20 File View Help

* [t would be better to associate these values (50, 20)

{90, 60)

(10472}

(150, 91)

(74, 88)

{3, 156)

[0, 0)

e
Tuples

Good for associating a fixed number of items
Syntax for creating a tuple:

(value0, valuel, .. ,valueN)
Example:

("Tucson", 90, 060)
Tuples can be subscripted just like lists and strings:

>>> t = ("Tucson", 90, 060)
>>> ¢

('Tucson', 90, 060)

>>> t[0]

"Tucson'

uples vs. lists

* Tuples
 tuples hold a fixed number of items
* the items in a tuple cannot be assigned to

>>> t = ("Tucson", 90, 060)

>>> ¢

('Tucson', 90, 60)

>>> t[0] = "OldPueblo"

TypeError: 'tuple' object does not support i1tem assignment
e Lists

* lists may grow or shrink
* the items in a list can be assigned to
* typically a list holds values of the same type (e.g., all integers or all strings)

Using tuples

* As mentioned, tuples are subscripted just like lists and strings

t =
X coord =

("Tucson",

90, 60)

t[1]

* You can loop through tuples

the same as lists and strings

operation |call result
len() len((1, 2, 3)) 3
+ (L, 2, 3) + (L, 2, 3, 4, 5, 0)
(4, 5, 0)
* ('"Hi', 1) * 2 ('"Hi', 1, 'Hi', 1)
in 3 in (1, 2, 3) True
for for x in (1,2,3): |1
print (x) 2
3
min () min((1, 3)) 1
max () max ((1, 3)) 3

Using tuples
>>> book = ("Pride and Prejudice", "Austin", 1813, "Fiction")
>>> book
('"Pride and Prejudice', 'Austin', 1813, 'Fiction')
>>> len (book)
4
>>> "Fiction" 1n Dbook
True
>>> for i1tem 1n book:

print (item)

Pride and Prejudice
Austin

1813

Fiction

>>>

Zipval

* Write a function called zipval (1st, wvalue) that take a list and value
as parameters and returns a list of tuples consisting of each element of the
list and the value

call return
zipval ([10,20,30]1, "a") [(10,'a'"), (20,'a'"), (30, 'a']l)

ale

* Write a function called zip (a, Db) that takes two lists as parameters
and returns a list of tuples. Each tuple consists of the paired consecutive
values of the parameter lists.

call return
zip([1,2,3]1,[4,5,6]) [(1,4), (2,5), (3, 6)]

B Drawing... =

A programming problem File View Help

(a0, 209

» Given a file of cities' names and (x, y) coordinates:

Winslow 50 20
Tucson 90 60
Phoenix 10 72
Bisbee 74 98
Yuma 5 136
Page 150 91

(5, 186)

104723

O] x|

(90, 60)

(74, 98)

(150, 91)

(0, 0)

* Write a program to draw the cities on a DrawingPanel, then simulates an

earthquake that turns all cities red that are within a given radius:

Epicenter x? 100
Epicenter y? 100
Affected radius? 75

12

Earthquake plot

Draws all of the cities affected by earthquakes
given the radius input by the user.
from drawingpanel import *

def main () :
cities = get citiles()

gets information from the user

epi_X = int(input("Epicenter x? n))
epi_y - th(inUt("Epicenter y? ")
radius = int (input ("Radius? "))

draw (cities, epl X, epl y, radius)

Earthquake plot — cont.

Let's write get cities().
First step is the pseudocode.

Open the file cities. txt

Read all the lines from the file

For each line of the file
create a tuple of the city and the x and y coordinates
add that tuple to a list

return the list

Earthquake plot — cont.

Returns a list of tuples. Each tuple contains a city name, x and y
coordinates from one line of cities.txt

def get cities():

file = open("cities.txt")

lines = file.readlines|()

cities = []

for line in lines: # format: 'Tucson, 60, 90'

parts = line.split ()
city = (parts[0], parts[l], parts[2])
cities.append(city)

return cities

Earthquake plot — cont.

Draws all of the cities as dots on a DrawingPanel. If in
the affected radius, colors them red, otherwise black.
Draws a circle around the affected region.
def draw(cities, epli x, epl y, radius):
p = DrawingPanel (400, 400)

p.canvas.create oval (epi x - radius, epl y - radius,
epli x + radius, epli y + radius)
for city in cities: # the variable city is a tuple
x = int(city[1l]) # get x-coordinate
y = int(city[2]) # get y-coordinate
color = "black"
if(x >= epl x - radius and x <= epl X + radius and

y >= epl y - radius and y <= epil y + radius):
color = "red"
p.canvas.create oval(x, y, x + 4, y + 4, outline=color)

Days till

* Write a function called days till that accepts a start month and
day and a stop month and day and returns the number of days
between them

call return
days till ("januAry", 1, "January", 10) 9
days till ("novembeR", 15, "december", 10) 25
days till ("OCTober", 6, "december", 17) 72

(

days till ("october", o, "ocTober", 1) 360

Days till solution

def days till(start month,

months = [('january',

('July',

31),

if start month.lower ()

start day,

31), ('february', 28), ('march', 31), ('april', 30), ('may',

("august',

stop month, stop day):

31), ('september', 30), ('october', 31),

== stop month.lower () and stop day >= start day:

return stop day - start day

days = 0
for i in range (0,
month = months

if month[0] ==

days = month[1]

i+=1

while months[i

i+=1

len (months)) :

[1]

start month.lower () :

- start day

5 12]1[0] != stop month.lower():
days += months[i1i % 12][1]

days += stop day

return days

('november',

31), ('june',

30),

30),

('december',

31) 1]

