
CSc 110, Spring 2017
Lecture 24: print revisited, tuples cont.

1

print

2

print revisited
We often convert to strings when printing variables:

print("The sum is " + str(sum))

This is not always necessary. Definition of built-in function print:
print(value, ..., sep=' ', end='\n')

Prints the values to the console.

Optional keyword arguments:

sep: string inserted between values, default a space.

end: string appended after the last value, default a newline.

Can use this instead:
print("The sum is", sum)

3

print revisited
Examples:
>>> x = 10

>>> y = 20

>>> print(x, y)

10 20

>>> print("x =", x)

x = 10

>>> print("x =", x, "y =", y)

x = 10 y = 20

>>> print("x =", x, " and ", "y =", y)

x = 10 and y = 20

>>>

Note that the default value for the sep= option is providing the space after the "="

4

print revisited
This works for lists and tuples also:

>>> alist = ['ab', 'cd', 'ef']

>>> print(alist)

['ab', 'cd', 'ef']

>>> t = ("Fundamental Algorithms", "Knuth", 1968)

>>> print(t)

('Fundamental Algorithms', 'Knuth', 1968)

>>>

>>> print(x ,y, alist)

10 20 ['ab', 'cd', 'ef']

We can use the sep= option to specify the separator:
>>> print(x, y, alist, sep='--')

10--20--['ab', 'cd', 'ef']
5

help

6

help

• help(): a function in Python that gives information on built-in functions and methods.
• Looking at documentation is a skill that programmers need to develop.
• You may not understand the documentation completely, but try it.

>>> help(print)
Help on built-in function print in module builtins:

print(...)
print(value, ..., sep=' ', end='\n', file=sys.stdout, flush=False)

Prints the values to a stream, or to sys.stdout by default.
Optional keyword arguments:
file: a file-like object (stream); defaults to the current

sys.stdout.
sep: string inserted between values, default a space.
end: string appended after the last value, default a newline.
flush: whether to forcibly flush the stream.

>>>
7

help

help(): for built-in methods, specify the type and method name using the dot
notation.

>>> help(str.split)

Help on method_descriptor:

split(...)

S.split(sep=None, maxsplit=-1) -> list of strings

Return a list of the words in S, using sep as the

delimiter string. If maxsplit is given, at most maxsplit

splits are done. If sep is not specified or is None, any

whitespace string is a separator and empty strings are

removed from the result.

>>>
8

Creating Tuples – a note

Syntax for creating a tuple:

(value0, value1, … ,valueN)

Example:

("Tucson", 90, 60)

The parenthesis are optional. The comma is the tuple constructor:

>>> t = "Tucson", 90, 60

>>> t

('Tucson', 90, 60)

>>> t[0]

'Tucson'
9

Tuples

This can lead to confusing bugs:
…

>>> val = 40,

>>> sum += val

Traceback (most recent call last):

File "<pyshell#58>", line 1, in <module>

sum += val

TypeError: unsupported operand type(s) for +=: 'int'
and 'tuple'

>>>

If you get an unexpected type error, look for an unexpected comma.

10

Using tuples

• Items are accessed via subscripting:
t = ("Tucson", 90, 60)

x_coord = t[1]

• You can loop through tuples

the same as lists and strings

operation cal result

len() len((1, 2, 3)) 3

+ (1, 2, 3) +

(4, 5, 6)

(1, 2, 3, 4, 5, 6)

* ('Hi', 1) * 2 ('Hi', 1, 'Hi', 1)

in 3 in (1, 2, 3) True

for for x in (1,2,3):

print(x)

1

2

3

min() min((1, 3)) 1

max() max((1, 3)) 3

11

Lists of tuples
• Given the list below:

>>> all_months =[('january', 31),('february', 28), ('march',31),

('april', 30), ('may', 31),('june', 30),

('july', 31), ('august', 31), ('september', 30),

('october', 31), ('november', 30), ('december',31)]

Write code for two different ways to print each tuple in all_months:

1) 2)

12

Lists of tuples
• Given the list below:

>>> all_months =[('january', 31),('february', 28), ('march',31),

('april', 30), ('may', 31),('june', 30),

('july', 31), ('august', 31), ('september', 30),

('october', 31), ('november', 30), ('december',31)]

1) Write the code to print the days of all the tuples in all_months:

13

Club problem

• Write a program that maintains information about members of a club.
• The club maintains the name, the birthday month, and a count of attendance

for each member.

• The membership file is kept in "members.txt"

• The program provides the user with the three options shown below.

Select one of the following options:

1. Generate a birthday list:

2. Remove a member:

3. Update attendance:

Select 1, 2, or 3:

14

Club problem
• If option 1 is selected, the program prompts the user for a birthday month

and then writes the names of all users with that birthday month to a file
called "birthdays.txt".

• If option 2 is selected, the program prompts for the name of the member
to be removed and removes that member from membership list.

• If option 3 is selected, the program updates the attendance count for all
members.

• The file "members.txt" is updated afterwards to reflect the changes made.
Select one of the following options:

1. Generate a birthday file:

2. Remove a member:

3. Update attendance:

Select 1, 2, or 3:

15

Club problem
Assume that the user input will be correct (no error checking needed).
The format of "members.txt" is shown below:

mary october 31

sue april 46

tom march 52

kylie april 24

ben june 45

sally april 22

harry june 48

ann march 44

steve august 55

What data structure best suits this problem?

16

Club solutiondef main():

member_list = get_members("members.txt")

print("Select one of the following options:")

print("1. Generate a birthday list:")

print("2. Remove a member:")

print("3. Update attendance:")

n = int(input("Select 1, 2, or 3: "))

if (n == 1): # generate birthday list file

month = input("Enter birthday month: ")

generate_bdays(member_list, month.lower(), "birthdays.txt")

elif (n == 2): # remove member

name = input("Enter name of member to remove: ")

remove_member(member_list, name.lower())

else: # update attendance of all members

update_attendance(member_list)

update("members.txt", member_list) 17

Club solution
Read in the current members of a club from the file name given as

a parameter. Return a list of tuples containing

the name, birthday month, and days attended.

def get_members(fname):

f = open(fname)

lines = f.readlines()

members = [] #initialize the list

for line in lines:

info = line.split()

name = info[0]

bd_month = info[1]

days_attended = info[2]

members.append((name, bd_month, days_attended)) # add a tuple of info

return members 18

Club solution

Let's write the code for option 3: update attendance for each member.

def update_attendance(mlist):

19

Club solution

Increment the attendance count of all members by one.

def update_attendance(mlist):

for i in range(0, len(mlist)):

member = mlist[i] # get the ith member - a tuple

replace the ith element with a new tuple

mlist[i] = (member[0], member[1], int(member[2]) + 1)

return

20

