
CSc 110, Spring 2017
Lecture 28: Sets and Dictionaries

Adapted from slides by Marty Stepp and Stuart Reges

1

Mountain peak

Write a program that reads elevation data from a file, draws it on a
DrawingPanel and finds the path from the highest elevation to the
edge of the region.

Data:

34 76 87 9 34 8 22 33 33 33 45 65 43 22

5 7 88 0 56 76 76 77 4 45 55 55 4 5

…

2

Mountain peak

data =

[[34, 76, 87, 9, 34, 8, 22, 33, 33, 33, 45, 65, 43, 22]

[5, 7, 88, 0, 56, 76, 76, 77, 4, 45, 55, 55, 4, 5]

...

]

Next steps:

4) Find the peak

5) Find the steepest path down

6) Draw the path in yellow

3

4) Find the peak

data =

[[34, 76, 87, 9, 34, 8, 22, 33, 33, 33, 45, 65, 43, 22]

[5, 7, 88, 0, 56, 76, 76, 77, 4, 45, 55, 55, 4, 5]

...

]

Find the largest elevation in the list of lists. Write find_peak(data)

Return a tuple of the location in the 2d list

4

5) Find the steepest path
data =

[['2537', '2483', '2475', '2480', '2518', '2532', '2480', '2478', '2431']

['2541', '2549', '2614', '2700', '2647', '2746', '2690', '2621', '2550']

['2525', '2525', '2640', '2769', '2802', '2883', '2856', '2694', '2631']

['2514', '2505', '2526', '2614', '2717', '2715', '2867', '2836', '2771']

['2506', '2482', '2480', '2528', '2518', '2561', '2586', '2662', '2654']

['2527', '2477', '2464', '2459', '2452', '2475', '2480', '2500', '2518']

['2544', '2505', '2488', '2454', '2442', '2445', '2446', '2467', '2470']

['2528', '2486', '2464', '2446', '2434', '2436', '2442', '2444', '2450']

['2464', '2505', '2482', '2456', '2433', '2463', '2462', '2489', '2467']

['2532', '2541', '2519', '2515', '2496', '2502', '2529', '2519', '2553']]

How do we determine the steepest path?

We would need to compare the peak to each neighbor.
5

5) Find the steepest path down
data =

[['2537', '2483', '2475', '2480', '2518', '2532', '2480', '2478', '2431']

['2541', '2549', '2614', '2700', '2647', '2746', '2690', '2621', '2550']

['2525', '2525', '2640', '2769', '2802', '2883', '2856', '2694', '2631']

['2514', '2505', '2526', '2614', '2717', '2715', '2867', '2836', '2771']

['2506', '2482', '2480', '2528', '2518', '2561', '2586', '2662', '2654']]

...

]

We will simplify this problem.
Look at only three neighbors:

up
down
front

If peak is at location data[r][c], define each above.
6

5) Find the steepest path down
data =

[['2537', '2483', '2475', '2480', '2518', '2532', '2480', '2478', '2431']

['2541', '2549', '2614', '2700', '2647', '2746', '2690', '2621', '2550']

['2525', '2525', '2640', '2769', '2802', '2883', '2856', '2694', '2631']

['2514', '2505', '2526', '2614', '2717', '2715', '2867', '2836', '2771']

...]

Compare and find the smallest of the three to create the next

path element.

What happens if there are ties?

7

5) Find the steepest path down

Rules for ties.

If up == down but < front, choose randomly between them.

up = 2550

down = 2550

front = 2690

If front ties with up or down, choose front.

up = 2690 up = 2550

down = 2550 down = 2690

front = 2550 front = 2550

8

5) Pseudocode for find_path
initialize current location (this is both a row and column)

make an empty list for path

while location is still within the list bounds

assign up, front and down

if (up < down and up < front)

append up location to path

else if (down < up and down < front)

append down location to path

else if (down == up and up < front)

chose randomly between down and up

append one of them to path

else

append front location to path

update current location based on the chosen next location for path

return path
9

6) Pseudocode for draw_path

For each tuple in the path

Using the column and row given in the tuple, draw

a rectangle that is one pixel wide and filled in with yellow

10

lWrite a function print_rlist(rlist)that takes a rectangular list as a parameter and prints it out
as a grid.

For example, given the list defined below:

grid = [[8,2,7,8,2,1], [1,5,1,7,4,7],

[5,9,6,7,3,2], [7,8,7,7,7,9],

[4,2,6,9,2,3], [2,2,8,1,1,3]]

The call print_rlist(grid) prints the following output:

8 2 7 8 2 1

1 5 1 7 4 7

5 9 6 7 3 2

7 8 7 7 7 9

4 2 6 9 2 3

2 2 8 1 1 3

11

Exercise

• Write a program that counts the number of unique words in a large
text file (say, Moby Dick or the King James Bible).

• Store the words in a structure and report the # of unique words.

• Once you've created this structure, allow the user to search it to see whether
various words appear in the text file.

• What structure is appropriate for this problem? List? Tuple?

12

Sets

• set: A collection of unique values (no duplicates allowed)

• Sets are not indexed. They do not have an order.

• The following operations can be performed efficiently on sets:
• add, remove, search (contains)

"to" in set true

set

"the"
"of"

"from"

"to"

"she"
"you"

"him""why"

"in"

"down"

"by"

"if"

"be" in set false

13

Creating a set

• Use the function set:

a = set()

• Use {value, …, valuen}:
b = {"the", "hello", "happy"}

a.add(val) adds element val to a

a.discard(val) removes val from a if present

a.pop() removes and returns a random element from a

a - b returns a new set containing values in a but not in b

a | b returns a new set containing values in either a or b

a & b returns a new set containing values in both a and b

a ^ b returns a new set containing values in a or b but not both

You can also use in, len(), etc. 14

Looping over a set?

• You must use a for element in structure loop

• needed because sets have no indexes; can't get element i

Example:

for item in a:

print(item)

Outputs:

the

happy

hello

15

Exercise

• Write a program to count the number of occurrences of each unique
word in a large text file (e.g. Moby Dick).

• Allow the user to type a word and report how many times that word
appeared in the book.

• Report all words that appeared in the book at least 500 times.

• What structure is appropriate for this problem?

16

Dictionaries

• dictionary: Holds a set of unique keys and a collection of values,
where each key is associated with one value.
• a.k.a. "map", "associative array", "hash"

• basic dictionary operations:
• Add a mapping from a key to a value.

• Retrieve a value mapped to a key.

• Remove a given key and its
mapped value.

17

Creating dictionaries
• Creating a dictionary

• {key : value, …, keyn : valuen}

my_dict = {"Romeo": "Montague",

"Tyler" :"Durden",

"Tybalt" : "Capulet",

"Juliet" :"Capulet" }

my_dict[key] = value
adds a mapping from the given key to the given value;
if the key already exists, replaces its value with the given one

Accessing values:

• my_dict[key]
returns the value mapped to the given key (error if key not found)

my_dict["Juliet"] produces "Capulet"
18

Using dictionaries

• A dictionary allows you to get from one half of a pair to the other.
• Remembers one piece of information about every index (key).

• Later, we can supply only the key and get back the related value:
Allows us to ask: What is Suzy's phone number?

Dictionary

my_dict["Suzy"]

"206-685-2181"

Dictionary

key value

my_dict["Suzy"] = "206-685-2181"

19

Maps and tallying

• a map can be thought of as generalization of a tallying list
• the "index" (key) doesn't have to be an int

• count digits: 22092310907

(Roosevelt), (L)andon, (I)ndependent
• count votes:"RLLLLLLRRRRRLLLLLLRLRRIRLRRIRLLRIR"

index 0 1 2 3 4 5 6 7 8 9

value 3 1 3 0 0 0 0 1 0 2

key "R" "L" "I"

value 15 15 3

"R"

"L"

"I" 15

3

15

keys values
20

Dictionary methods

items() return a new view of the dictionary’s items ((key, value) pairs)

pop(key) removes any existing mapping for the given key and returns it
(error if key not found)

popitem() removes and returns an arbitrary (key, value) pair (error if empty)

keys() returns the dictionary's keys

values() returns the dictionary's values

You can also use in, len(), etc.

21

items, keys and values

• items function returns tuples of each key-value pair
• can loop over the keys in a for loop

ages = {}

ages["Merlin"] = 4

ages["Chester"] = 2

ages["Percival"] = 12

for cat, age in ages.items():

print(cat + " -> " + str(age))

• values function returns all values in the dictionary
• no easy way to get from a value to its associated key(s)

• keys function returns all keys in the dictionary

22

