
CSc 110, Spring 2017
Lecture 32: Objects

Adapted from slides by Marty Stepp and Stuart Reges

1

Pseudocode for finding the distance – Version1

initialize a current set of friends to name1

initialize distance to zero

while name2 not found in current set of friends

increment the distance

make a new set of friends from the current set using the dictionary

to reference the sets of friends

set the current set of friends to the union of the current set and new set of friends

print the distance

2

Sarah to Joshua
• This works but what if we looked for someone out of the friend network?

• What is the problem with current_friends?

new_friends

{'Christopher', 'Andrew', 'Emily'}

current_friends

{'Christopher', 'Sarah', 'Andrew', 'Emily'}

new_friends

{'Sarah', 'Ashley', 'Andrew', 'Emily', 'Jacob', 'Joshua',
'Christopher'}

current_friends

{'Ashley', 'Jacob', 'Joshua', 'Sarah', 'Andrew', 'Emily',
'Christopher'}

distance is: 2

We are never removing names that we have already seen.
3

Pseudocode for finding the distance – Version2

initialize a current set of friends to name1

Initialize a set of already seen friends to name1

initialize distance to zero

while name2 not found in current set of friends and length of current friends not zero

increment the distance

make a new set of friends from the current set using the dictionary

to reference the sets of friends

already seen friends is assigned to the union of itself and current friends

set the current set of friends to the new set of friends minus the already seen friends

if the length of the current set of friends is not zero

print the distance

else

print not connected 4

Reads in a dot file with friendship data – Version2

def main():

file = open("friends.dot")

lines = file.readlines()

friends = create_dict(lines)

name1 = input("Enter a name: ")

name2 = input("Enter a name: ")

#Are name1 and name2 friends?

current_friends = {name1}

already_seen = {name1}

distance = 0

stops when the friend is found or there is no possibility of a connection

while(name2 not in current_friends and len(current_friends) != 0):

distance += 1

new_friends = set()

builds up a set of the friends of the current friends

for friend in current_friends:

new_friends = new_friends | friends[friend]

already_seen = already_seen | current_friends

replaces current friends and gets rid of friends looked at before

current_friends = new_friends - already_seen

if(len(current_friends) != 0):

print("found at distance " + str(distance))

else:

print("sorry they are not connected") 5

Objects

• To human beings, an object is:

"A tangible and/or visible thing; or,

(a computer, a chair, a noise)

Something that may be apprehended intellectually; or,

(the intersection of two sets, a disagreement)

Something towards which thought or action is directed"

(the procedure of planting a tree)

— Grady Booch

6

Objects

• Objects have state and behavior
• the state of an object can influence its behavior

• the behavior of an object can change its state

• State:
All properties of an object and the values of those properties.

• Behavior:

How an object acts and reacts, in terms of changes in state and
interaction with other objects.

• object: An entity that combines state and behavior.
7

The Class concept

• It is often useful to think of objects as being members of a class:

a set of objects having the same behavior and underlying structure

• A class is a template for defining a new type of object

An object is an instance of a class.

8

Blueprint analogy
iPod blueprint

state:
current song
volume
battery life

behavior:
power on/off
change station/song
change volume
choose random song

iPod #1

state:
song = "1,000,000 Miles"
volume = 17
battery life = 2.5 hrs

behavior:
power on/off
change station/song
change volume
choose random song

iPod #2

state:
song = "Letting You"
volume = 9
battery life = 3.41 hrs

behavior:
power on/off
change station/song
change volume
choose random song

iPod #3

state:
song = "Discipline"
volume = 24
battery life = 1.8 hrs

behavior:
power on/off
change station/song
change volume
choose random song

used to create instances of an iPod

9

Classes

• In Python, that blueprint is expressed by a class definition

• A class describes the state and behavior of similar objects

• The attributes of a class represent the state of an instance

• The methods of a class describe the behavior

10

Recall earthquake program

• Given a file of cities' names and (x, y) coordinates:

Winslow 50 20

Tucson 90 60

Phoenix 10 72

Bisbee 74 98

Yuma 5 136

Page 150 91

• Write a program to draw the cities on a DrawingPanel, then simulates an earthquake that turns all
cities red that are within a given radius:

Epicenter x? 100
Epicenter y? 100
Affected radius? 75

11

Observations

• The data in this problem is a set of points.

• Used tuples before. Now use objects with state and behavior.

• A Point object:

attributes (state):

a city's x/y data

methods (behavior):

Draw its x/y location on a DrawingPanel object

Compare the distances between Points
to see whether the earthquake hit a given city 12

Point objects (desired)
p1 = Point()

p2 = Point()

• Attributes of each Point object:

• Methods in each Point object:

Method name Description

set_location(x, y) sets the point's x and y to the given values

translate(dx, dy) adjusts the point's x and y by the given amounts

distance(p) how far away the point is from point p

draw(panel) displays the point on a drawing panel

attribute Description

x the point's x-coordinate

y the point's y-coordinate

13

Point class as blueprint

• The class (blueprint) will describe how to create objects.
• Each object will contain its own data and methods.

Point class

state:
x, y

behavior:
set_location(x, y)

translate(dx, dy)

distance(p)

draw(panel)

Point object #1

state:
x = 50 y = 20

behavior:
set_location(x, y)
translate(dx, dy)
distance(p)
draw(panel)

Point object #2

state:
x = 90, y = 60

behavior:
set_location(x, y)
translate(dx, dy)
distance(p)
draw(panel)

Point object #3

state:
x = 10, y = 72

behavior:
set_location(x, y)
translate(dx, dy)
distance(p)
draw(panel)

14

Attribute Syntax

• attribute: A variable inside an object that is part of its state.
• Each object has its own copy of each attribute

• Also called an instance variable

• Declaration syntax:

self.name = value

15

Method Syntax

• method : Defines the behavior of objects.

def name(self, parameters, ...):
statements

• Same syntax as functions, but with an extra self parameter

• There is a special method that is called when an object is created
• Used to initialize the object's instance variables

def __init__(self, parameters, ...):
statements

16

Point class, version 1

class Point:

def __init__(self):

self.x = 0

self.y = 0

• The above code defines a new type named Point.

• Each Point object contains two pieces of data:
• an int named x, and

• an int named y.

• __init__ method initializes x and y

17

Point class, version 1

class Point:

def __init__(self):

self.x = 0

self.y = 0

Given this version of the Point class, every Point object will have

an x and y set to 0.

18

Using the Point class

• Create a new Point object:

p1 = Point()

• access/modify an object's instance variables (attributes)

• access: variable.attribute
• modify: variable.attribute = value

• Example:
p1 = Point()

p2 = Point()

print("the x-coord is ", p1.x) # access

p2.y = 13 # modify

19

importing a Class definition

• Assume that class Point is in file point.py
• A class can be used via the import.

point_main.py

from point import *

def main():

p1 = Point()

p1.x = 7

p1.y = 2

p2 = Point()

p2.x = 4

p2.y = 3

...

main()

point.py (class definition)

class Point:

def __init__(self):

self.x = 0

self.y = 0

x 7 y 2

x 4 y 3

20

Using Point objects

def main():

create two Point objects

p1 = Point()

p1.y = 2

p2 = Point()

p2.x = 4

print(p1.x , p1.y) # 0, 2

move p2 and then print it

p2.x += 2

p2.y += 1

print(p2.x,p2.y) # 6, 1

21

Implementing the draw method

class Point:

def __init__(self):

self.x = 0

self.y = 0

Draws this Point object on the given panel

def draw(self, panel):

panel.canvas.create_rectangle(x, y, x + 3, y + 3)

• How will the method know which point to draw?

• How will the method access that point's x/y data?

22

• The object instance is passed as the first argument to the draw method, which operates on the

object's state:

p1 = Point()

p1.x = 7

p1.y = 2

p2 = Point()

p2.x = 4

p2.y = 3

p1.draw(panel)

p2.draw(panel)

def draw(self, panel):

this code can see p1's x and y

Point objects

x 7 y 2

x 4 y 3

def draw(self, panel):

this code can see p2's x and y

p2

p1

23

The implicit parameter

• implicit parameter:
The object on which an instance method is called.

• During the call p1.draw(panel)
the object referred to by p1 is the implicit parameter.

• During the call p2.draw(panel)
the object referred to by p2 is the implicit parameter.

• The instance method can refer to that object's fields.

• We say that it executes in the context of a particular object.

• draw can refer to the x and y of the object it was called on.

24

Point class, version 2

class Point:

def __init__(self):

self.x = 0

self.y = 0

Draws this Point object on the given panel

def draw(self, panel):

panel.canvas.create_rectangle(x, y, x + 3, y + 3)

panel.canvas.create_string("(" + str(x) + ", " +

str(y) + ")", x, y)

25

The Object Concept

• object-oriented programming (OOP): Programs that perform their
behavior as interactions between objects

26

Class method questions

• Write a method translate that changes a Point's location by a given
dx, dy amount.

• Write a method distance_from_origin that returns the distance
between a Point and the origin, (0, 0).

Use the formula:

• Modify the Point class to use these methods.

   212

2

12 yyxx 

27

Class method answers

class Point:

def __init__(self):

self.x

self.y

def translate(self, dx, dy):

x = x + dx

y = y + dy

def distance_from_origin(self):

return sqrt(x * x + y * y)

28

