
CSc 110, Spring 2017
Lecture 33: Methods

Adapted from slides by Marty Stepp and Stuart Reges

1

Questions
class Point:

def __init__(self):

self.x = 0

self.y = 0

def draw(self, panel, color):

panel.canvas.create_oval(self.x, self.y,

self.x + 3, self.y + 3, outline=color)

panel.canvas.create_text(self.x, self.y,

text = "(" + str(self.x) + ", " + str(self.y) + ")")

What is the name of the class?
What is this class definition used for?
x is an ___________ of the class Point.
draw is a ___________ of the class Point.
What is the purpose of __init__ ? 2

Initializing objects

• Currently it takes 3 lines to create a Point and initialize it:

p = Point()

p.x = 3

p.y = 8

• Here's an alternative approach:

p = Point(3, 8) # not implemented yet

We will modify the Point class constructor to take parameters.

3

Point class, version 3

class Point:

def __init__(self, x, y):

self.x = x

self.y = y

def draw(self, panel):

panel.canvas.create_rectangle(

self.x, self.y, self.x + 3, self.y + 3)

panel.canvas.create_text(self.x, self.y,

text = "(" + str(self.x) + ", " + str(self.y) + ")")

• Each Point object is now initialized to the x and y passed in.

4

Class method question
Write a method distance_from_origin that returns the distance between
a Point and the origin, (0, 0). Usage is shown below.

>>> p = Point(3,10)

>>> p.distance_from_origin()

10.44030650891055

>>>

Use the Pythagorean theorem.

Modify the Point class.

5

Class method answer

class Point:

def __init__(self, x, y):

self.x = x

self.y = y

def distance_from_origin(self):

return sqrt(self.x ** 2 + self.y **2)

...

6

class Point:

def __init__(self, x, y):

self.x = x

self.y = y

def distance_from_origin(self):

return sqrt(self.x **2 + self.y **2)

...(other methods here)

p1 = Point(7,2)

p2 = Point(4,3)

p1.distance_from_origin()

p2.distance_from_origin()

Understanding the implicit variable self

7

def distance_from_origin(self):

self points to p2's x and y

return sqrt(self.x ** 2 + self.y **2)

• For a given Point object, the distance_from_origin method operates on that object's

state.

p1 = Point(7,2)

p2 = Point(4,3)

p1.distance_from_origin()

p2.distance_from_origin()

def distance_from_origin(self):

self points to p1's x and y

return sqrt(self.x ** 2 + self.y**2)

Understanding the implicit variable self

x 7 y 2

x 4 y 3

p2

p1

8

Printing objects

• By default, Python doesn't know how to print objects:

p = Point()

p.x = 10

p.y = 7

print("p is ", p) # p is <p.Point object at 0x000001BA6AE0BF28>

better, but cumbersome; p is (10, 7)

print("p is (" + str(p.x) + ", " + str(p.y) + ")")

desired behavior

print("p is ", p)) # p is (10, 7)

9

Class method question

• Write a method show() that returns a string consisting of the x and y attributes
of a point surrounded by parenthesis.

The following code provides an example of using the show() method:

>>> p = Point(30, 45)

>>> p.show()

'(30,45)'

>>>

>>> print(p.show())

(30,45)

>>>

10

Class method question

• Write a method translate that changes a Point's location by a given
dx, dy amount.

The following code provides an example of using the translate method:

>>> p = Point(8, 20)

>>> p.show()

'(8,20)'

>>> p.translate(2, 10)

>>> p.show()

'(10,30)'

>>>
11

The __str__ method
tells Python how to convert an object into a string

p1 = Point(7, 2)

print("p1: " + str(p1))

By default you get this output:

<point.Point object at 0x000001BA6AE0BF28>

Every class has a __str__, even if it isn't in your code.

You can write your own code for the __str__ method

12

__str__ syntax

def __str__(self):

code that returns a String representing this object

• Method name, return, and parameters must match exactly.

• Example:

Returns a String representing this Point.
def __str__(self):

return "(" + str(self.x) + ", " + str(self.y) + ")"

13

Class method answers
class Point:

def __init__(self, x, y):

self.x = x

self.y = y

def distance_from_origin(self):

return sqrt(self.x ** 2 + self.y **2)

def show(self):

return "(" + str(self.x) + "," + str(self.y + ")"

def translate(self, dx, dy):

self.x += dx

self.y += dy

def __str__(self):
return "(" + str(self.x) + ", " + str(self.y) + ")"

…
14

Kinds of methods

• accessor: A method that examines an object's state.
• Example: show, distance_from_origin

• often returns something

• also called a getter method

• mutator: A method that modifies an object's state.
• Example: translate

• also called a setter method

15

class Review:

def __init__(self, title, author, rating):

self.__title = title

self.__author = author

self.__rating = int(rating)

def get_title(self):

return self.__title

def get_author(self):

return self.__author

def get_rating(self):

return self.__rating

def __str__(self):

return ("Title: " + self.__title + " by " + self.__author +

", rating = " + str(self.__rating))

16

Accessing objects in a set
How do you access an object that is in a set in a dictionary?

Regardless of what the set contains, how do you access the elements of a set?

Suppose you have a set called set_of_reviews:

for r in set_of_reviews:

<process r>

17

Accessing attributes of a Review object
• If you loop over a set and each set element r is a Review object, how do you access the

attributes of r?

• Looking at the Review class the methods are:

get_title()

get_author()

get_rating()

• If you have a Review object r, then

r.get_title() is the title

r.get_author() is the author

r.get_rating() is the rating

18

