
CSc 110, Spring 2017
Lecture 36: Inheritance

Adapted from slides by Marty Stepp and Stuart Reges

1

Review
A class to represent employees.

class Employee:

def get_hours(self):

return 40

def get_salary(self):

return 40000.0

def get_vacation_days(self):

return 10

def get_vacation_form(self):

return "yellow"

A class to represent secretaries.

class Secretary (Employee):

def take_dictation(self, text):

print("Taking dictation of text: " + text)

2

How many methods does Employee have?

How many attributes does Employee have?

What's the relationship between Secretary and
Employee?

How many methods does Secretary have?

An __________ is an ___________ of a class.

Terminology
• Superclass

• Subclass

_____ is a subclass of _________

_____ is a superclass of ________

This is a Unified Modeling Language (UML) class diagram.

3

Employee regulations

• Consider the following employee regulations:

• Employees work 40 hours / week.

• Employees make $40,000 per year, except legal secretaries who make $5,000 extra per year ($45,000 total),

and marketers who make $10,000 extra per year ($50,000 total).

• Employees have 2 weeks of paid vacation leave per year, except lawyers who get an extra week (a total of 3).

• Employees should use a yellow form to apply for leave, except for lawyers who use a pink form.

• Each type of employee has some unique behavior:

• Lawyers know how to sue.

• Marketers know how to advertise.

• Secretaries know how to take dictation.

• Legal secretaries know how to prepare legal documents.

4

Implementing Lawyer

• Consider the following lawyer regulations:
• Lawyers get an extra week of paid vacation (a total of 3).

• Lawyers use a pink form when applying for vacation leave.

• Lawyers have some unique behavior: they know how to sue.

• Problem: We want lawyers to inherit most behavior from employee,
but we want to replace parts with new behavior.

5

Overriding methods

• override: To write a new version of a method in a subclass that replaces the
superclass's version.
• No special syntax required to override a superclass method.

Just write a new version of it in the subclass.

class Lawyer(Employee):
overrides get_vacation_form method in Employee

class
def get_vacation_form():

return "pink"
...

• Exercise: Complete the Lawyer class.
• (3 weeks vacation, pink vacation form, can sue)

6

Lawyer class

A class to represent lawyers.

class Lawyer(Employee):

overrides get_vacation_form from Employee class

def get_vacation_form(self):

return "pink"

overrides get_vacation_days from Employee class

def get_vacation_days(self):

return 15 # 3 weeks vacation

def sue(self):

print("I'll see you in court!")

7

Exercise: implement Marketer

• Recall the following marketer regulations:
• Marketers make $10,000 more ($50,000 per year)

• Marketers know how to market. (Print a phrase a marketer might use.)

• Write the code for the Marketer class

8

Marketer class

A class to represent marketers.

class Marketer(Employee):

def advertise(self):

print("Act now while supplies last!")

def get_salary(self):

return 50000.0 # $50,000.00 / year

9

Levels of inheritance

• Multiple levels of inheritance are allowed.
• Example: A legal secretary is the same as a regular secretary but makes more

money ($45,000) and can file legal briefs

• Exercise: Complete the LegalSecretary class.

10

LegalSecretary class

A class to represent legal secretaries.

class LegalSecretary(Secretary):

def file_legal_briefs(self):

print("I could file all day!")

def get_salary(self):

return 45000.0 # $45,000.00 / year

11

Change of perspective

• Recall the regulations regarding salaries:
• Employees make $40,000 per year, except legal secretaries who make $5,000 extra per

year ($45,000 total), and marketers who make $10,000 extra per year ($50,000 total).

• We've been hardcoding the salaries in the methods like this:
def get_salary(self):

return 45000.0 # $45,000.00 / year

• Instead, consider writing the methods in terms of a base salary plus an "uplift" :

class LegalSecretary(Secretary):
def get_salary(self):

base_salary = ...regular employee salary...
return base_salary + 5000.0

...

12

Calling overridden methods

• Subclasses can call overridden methods with super

super(ClassName, self).method(parameters)

• Example:

class LegalSecretary(Secretary):

def get_salary(self):

base_salary = super(LegalSecretary,self).get_salary()
return base_salary + 5000.0

...

13

Inheritance and constructors

• Imagine that we want to give employees more vacation days the
longer they've been with the company.
• For each year worked, we'll award 2 additional vacation days.

• When an Employee object is constructed, we'll pass in the number of years
the person has been with the company.

• This will require us to modify our Employee class and add some new state
and behavior.

• Exercise: Make necessary modifications to the Employee class.

14

Modified Employee class
class Employee:

def __init__(self, initial_years):

self.__years = initial_years

def get_hours(self):

return 40

def get_salary(self):

return 50000.0

def get_vacation_days(self):

return 10 + 2 * self.__years

def get_vacation_form(self):

return "yellow" 15

Problem with constructors

• Now that we've added the constructor to the Employee class, an
error is produced:

TypeError: __init__() missing 1 required positional
argument: 'initial_years'

• Short explanation: Once we write an __init__(self, p1, … pn)

that requires parameters in the superclass, we must now write initialization
methods for our employee subclasses as well.

• Exception: If the default behavior of the superclass is acceptable for all
subclasses, you simply modify the class construction expression.

16

Modified Marketer class
A class to represent marketers.

class Marketer(Employee):

def __init__(years):

super(Marketer, self).__init__(years)

def advertise(self):

print("Act now while supplies last!")

def get_salary():

return super(Marketer, self).get_salary() + 10000.0

• Exercise: Modify the Secretary subclass.
• Secretaries' years of employment are not tracked.
• They do not earn extra vacation for years worked.

17

Modified Secretary class
A class to represent secretaries.

class Secretary(Employee):

def __init__(self):

super(Secretary, self).__init__(0)

def take_dictation(self, text):

print("Taking dictation of text: " + text)

• Since Secretary doesn't require any parameters to its constructor,

LegalSecretary does not require a constructor.

• Its default constructor calls the Secretary constructor.

18

Inheritance and attributes

• Try to give lawyers $5000 for each year at the company:
class Lawyer(Employee):

...
def get_salary(self):

return super(Lawyer, self).get_salary() + 5000 *
self.__years

...

• Does not work; the error is the following:
AttributeError: 'Lawyer' object has no attribute
'_Lawyer__years' ^

• Private attributes cannot be directly accessed from subclasses.
• One reason: So that subclassing can't break encapsulation.
• How can we get around this limitation?

19

Improved Employee code
Add an accessor for any attribute needed by the subclass.

class Employee:

self.__years

def __init__(self, initial_years):

self.__years = initial_years

def get_years(self):

return self.__years

...

class Lawyer(Employee):

def __init__(self, years):

super(Lawyer, self).__init__(years)

def get_salary(self):

return super(Lawyer, self).get_salary() + 5000 *
get_years()

...
20

Revisiting Secretary

• The Secretary class currently has a poor solution.
• We set all Secretaries to 0 years because they do not get a vacation bonus for

their service.

• If we call get_years on a Secretary object, we'll always get 0.

• This isn't a good solution; what if we wanted to give some other reward to all
employees based on years of service?

• Redesign our Employee class to allow for a better solution.

21

Improved Employee code

• Let's separate the standard 10 vacation days from those that are
awarded based on seniority.

class Employee:
def __init__(self, initial_years):

self.__years = initial_years

def get_vacation_days(self):
return 10 + self.get_seniority_bonus()

vacation days given for each year in the company
def get_seniority_bonus(self):

return 2 * self.__years
...

• How does this help us improve the Secretary?
22

Improved Secretary code

• Secretary can selectively override get_seniority_bonus;
when get_vacation_days runs, it will use the new version.
• Choosing a method at runtime is called dynamic binding.

class Secretary(Employee):

def __init__(self, years):

super(Secretary, self).__init__(years)

Secretaries don't get a bonus for their years of service.

def get_seniority_bonus(self):

return 0

def take_dictation(self, text):

print("Taking dictation of text: " + text) 23

