
CSc 110, Spring 2017
Lecture 37: Critters

Adapted from slides by Marty Stepp and Stuart Reges

1

Calling overridden methods
• Subclasses can call overridden methods with super

super(ClassName, self).method(parameters)

• Example:

class LegalSecretary(Secretary):
def get_salary(self):

base_salary = super(LegalSecretary,self).get_salary()
return base_salary + 5000.0

...

Name the superclass of LegalSecretary _____________________

What method did LegalSecretary override? _________________

What code creates an instance of the class LegalSecretary? _________________________

2

Inheritance and constructors

• Imagine that we want to give employees more vacation days the
longer they've been with the company.
• For each year worked, we'll award 2 additional vacation days.

• When an Employee object is constructed, we'll pass in the number of years
the person has been with the company.

• This will require us to modify our Employee class and add some new state
and behavior.

• Exercise: Make necessary modifications to the Employee class.

3

Modified Employee class
class Employee:

def __init__(self, initial_years):

self.__years = initial_years

def get_hours(self):

return 40

def get_salary(self):

return 40000.0

def get_vacation_days(self):

return 10 + 2 * self.__years

def get_vacation_form(self):

return "yellow" 4

Problem with constructors

• Now that we've added the constructor to the Employee class, an
error is produced:

TypeError: __init__() missing 1 required positional
argument: 'initial_years'

• Short explanation: Once we write an __init__(self, p1, … pn)

that requires parameters in the superclass, we must now write initialization
methods for our employee subclasses as well.

• Exception: If the default behavior of the superclass is acceptable for all
subclasses, you simply modify the class constructor expression.

5

Modified Marketer class
A class to represent marketers.

class Marketer(Employee):

def __init__(self, years):

super(Marketer, self).__init__(years)

def advertise(self):

print("Act now while supplies last!")

def get_salary():

return super(Marketer, self).get_salary() + 10000.0

• Exercise: Modify the Secretary subclass.
• Secretaries' years of employment are not tracked.
• They do not earn extra vacation for years worked.

6

Modified Secretary class
A class to represent secretaries.

class Secretary(Employee):

def __init__(self):

super(Secretary, self).__init__(0)

def take_dictation(self, text):

print("Taking dictation of text: " + text)

• Since Secretary doesn't require any parameters to its constructor,

LegalSecretary does not require a constructor.

• Its default constructor calls the Secretary constructor.

7

Inheritance and attributes

• Try to give lawyers $5000 for each year at the company:
class Lawyer(Employee):

...
def get_salary(self):

return super(Lawyer, self).get_salary() + 5000 *
self.__years

...

• Does not work; the error is the following:
AttributeError: 'Lawyer' object has no attribute
'_Lawyer__years' ^

• Private attributes cannot be directly accessed from subclasses.
• One reason: So that subclassing can't break encapsulation.
• How can we get around this limitation?

8

Improved Employee code

Add an accessor for any attribute needed by the subclass.

class Employee:

def __init__(self, initial_years):

self.__years = initial_years

def get_years(self):

return self.__years

...

class Lawyer(Employee):

def __init__(self, years):

super(Lawyer, self).__init__(years)

def get_salary(self):

return super(Lawyer, self).get_salary() + 5000 * self.get_years()

...

9

CSc 110 Critters

• Ant

• Bird

• Hippo

• Vulture

• WildCat (creative)

• behavior:
• eat eating food
• fight animal fighting
• get_color color to display
• get_move movement
• __str__ letter to display

10

Inherit from the Critter class

• Syntax: class name(Critter):

class NewAnimal(Critter):

def eat()

returns True or False

def fight(opponent)

ROAR, POUNCE, SCRATCH

def get_color()

returns a string for the color, e.g., "blue"

def get_move()

returns NORTH, SOUTH, EAST, WEST, CENTER

def __str__()

11

How the simulator works
• "Go" → loop:

• move each animal (get_move)
• if they collide, fight
• if they find food, eat

• The simulator keeps score based on:
• How many animals of that kind are still alive
• How much food they have eaten
• How many other animals they have beaten in a fight

• Simulator is in control!
• get_move is one move at a time

• (no loops)

• Keep state (attributes)
• to remember for future moves

%

Next
move?

12

Development Strategy

• Simulator helps you debug
• smaller width/height

• fewer animals

• "Tick" instead of "Go"

• Write your own main
• call your animal's methods and print what they return

13

The Critter class
class Critter():

def eat(self):

return False

def fight(self, opponent):

return ATTACK_FORFEIT

def get_color(self):

return "grey"

def get_move(self):

return DIRECTION_CENTER

def __str__(self):

return "?"
14

The Critter class constants
Constants for attacks, directions

ATTACK_POUNCE = 0

ATTACK_ROAR = 1

ATTACK_SCRATCH = 2

ATTACK_FORFEIT = 3

DIRECTION_NORTH = 0

DIRECTION_SOUTH = 1

DIRECTION_EAST = 2

DIRECTION_WEST = 3

DIRECTION_CENTER = 4

15

Critter exercise: Cougar

• Write a critter class Cougar:

Method Behavior

__init__

eat Always eats.

fight Always pounces.

get_color Blue if the Cougar has never fought; red if he has.

get_move Walks west until he finds food; then walks east
until he finds food; then goes west and repeats.

__str__ "C"

16

Critter exercise: Cougar
• We need to know two things about its state:

• If it has ever fought

• How much food it has eaten in order to return the correct direction

(West/Eat/East/Eat/West/Eat/East, and so on)

Method Behavior

__init__

eat Always eats.

fight Always pounces.

get_color Blue if the Cougar has never fought; red if he has.

get_move Walks west until he finds food; then walks east
until he finds food; then goes west and repeats.

__str__ "C"
17

The Cougar class
from Critter import *

class Cougar(Critter):

returns a Cougar

def __init__(self):

self.fought = False

self.eaten = 0

returns "C" as a representation of the cougar

def __str__(self):

return "C"

returns that the critter does want to eat

def eat(self):

self.eaten += 1

return True
18

The Cougar class- cont.
returns the pounce attack

def fight(self, opponent):

self.fought = True

return ATTACK_POUNCE

returns west until the critter eats, returns east until it

eats again and then repeats

def get_move(self):

if(self.eaten % 2 == 0):

return DIRECTION_WEST

else:

return DIRECTION_EAST

returns blue if the critter has never fought and red if it has

def get_color(self):

if(not self.fought):

return "blue"

else:

return "red"
19

Ideas for state

• You must not only have the right state, but update that state properly
when relevant actions occur.

• Counting is helpful:
• How many total moves has this animal made?
• How many times has it eaten? Fought?

• Remembering recent actions in attributes is helpful:
• Which direction did the animal move last?

• How many times has it moved that way?

• Did the animal eat the last time it was asked?
• How many steps has the animal taken since last eating?
• How many fights has the animal been in since last eating?

20

Critter exercise: Anteater

• Write a critter class Anteater:

Method Behavior

__init__

eat Eats 3 pieces of food and then stops

fight randomly chooses between pouncing and roaring

get_color pink if hungry and red if full

get_move walks up two and then down two

__str__ "a" if hungry "A" otherwise

21

