
CSc 110, Spring 2017
Lecture 38: Critters

Adapted from slides by Marty Stepp and Stuart Reges

1



Calling overridden methods
• Subclasses can call overridden methods with super

super(ClassName, self).method(parameters)

• Example:

class Rabbit(Critter):
def __init__(self):

super(Rabbit,self).__init__()
self.__moves = 0
self.__hungry = False

What class is Rabbit inheriting from? _____________________

What method did Rabbit override above? _________________

What code creates an instance of the class Rabbit? _________________________

What code would cause the __str__ method of a class to be called?  _______________________

2



CSc 110 Critters

• Ant

• Bird

• Hippo

• Vulture

• WildCat (creative)

• behavior:
• eat eating food
• fight animal fighting
• get_color color to display
• get_move movement
• __str__ a single character to display

3



Inherit from the Critter class

• Syntax: class name(Critter):

class NewAnimal(Critter):

def eat()

# returns True or False

def fight(opponent)

# ROAR, POUNCE, SCRATCH

def get_color()    

# returns a string for the color, e.g., "blue" 

def get_move()

# returns NORTH, SOUTH, EAST, WEST, CENTER

def __str__()

4



How the simulator works
• "Go" →  loop:

• move each animal (get_move)
• if they collide, fight
• if they find food, eat

• The simulator keeps score based on:
• How many animals of that kind are still alive
• How much food they have eaten
• How many other animals they have beaten in a fight

• Simulator is in control!
• get_move is one move at a time

• (no loops)

• Keep state (attributes)
• to remember for future moves

%

Next 
move?

5



Development Strategy

• Simulator helps you debug
• smaller width/height

• fewer animals

• "Tick" instead of "Go"

• Write your own main
• call your animal's methods and print what they return

6



The Critter class
class Critter():

def eat(self):

return False

def fight(self, opponent):

return ATTACK_FORFEIT

def get_color(self):

return "grey"

def get_move(self):

return DIRECTION_CENTER

def __str__(self):

return "?"
7



The Critter class constants
# Constants for attacks, directions

ATTACK_POUNCE    = 0

ATTACK_ROAR      = 1    

ATTACK_SCRATCH   = 2

ATTACK_FORFEIT   = 3

DIRECTION_NORTH  = 0

DIRECTION_SOUTH  = 1

DIRECTION_EAST   = 2

DIRECTION_WEST   = 3

DIRECTION_CENTER = 4

8



Critter exercise: Cougar

• Write a critter class Cougar:

Method Behavior

__init__

eat Always eats.

fight Always pounces.

get_color Blue if the Cougar has never fought; red if he has.

get_move Walks west until he finds food; then walks east 
until he finds food; then goes west and repeats.

__str__ "C"

9



Critter exercise: Cougar
• We need to know two things about its state:

• Has it ever fought? 

• How much food it has eaten? Needed  in order to return the correct direction.       

(West/Eat/East/Eat/West/Eat/East, and so on)

• Two instance variables

fought (of type bool)

eaten (of type int)

• Method eat: increment eaten every time eat is called

• Method get_move: Walks west until he finds food; then walks east until he finds food; 

then goes west until west and repeats.

if eaten is even, walk west else walk east

10



The Cougar class
from Critter import * 

class Cougar(Critter):

# returns a Cougar

def __init__(self):

super(Cougar,self).__init__()    # call the superclass constructor

self.__fought = False

self.__eaten = 0

# returns "C" as a representation of the cougar

def __str__(self):

return "C"

# returns that the critter does want to eat

def eat(self):

self.__eaten += 1

return True

11



The Cougar class- cont.
# returns the pounce attack

def fight(self, opponent):

self.__fought = True

return ATTACK_POUNCE

# returns west until the critter eats, returns east until it

# eats again and then repeats

def get_move(self):

if(self.__eaten % 2 == 0):

return DIRECTION_WEST

else:

return DIRECTION_EAST

# returns blue if the critter has never fought and red if it has

def get_color(self):

if(not self.__fought):

return "blue"

else:

return "red"
12



Debugging: Cougar
• Start small.  Run the Cougar class.

• In idle, create a Cougar object

• Call the methods to verify the behavior

13



Debugging Cougar
>>> c = Cougar()

>>> c.get_color()

'blue'

>>> c.get_move()

3

>>> c.eat()

True

>>> c.get_move()

2

>>> c.fight()

Traceback (most recent call last):

File "<pyshell#5>", line 1, in <module>

c.fight()

TypeError: fight() missing 1 required positional argument: 
'opponent'

>>> 
14



Debugging: Cougar
• Add Stone and Cougar to the list of methods Critters.py

• Use a small grid size, few animals

• Go tick by tick

• Simulator actions on each tick for each animal:
• Move the animal (call get_move) in a random order

• If moved to occupied square, call both animials fight methods

• If moved onto food, call the animal's eat method.

• What the scores mean:
• How many animals of the class are alive

• How much food they have eaten

• How many other animals they have destroyed in a fight
15



Ideas for state

• You must not only have the right state, but update that state properly 
when relevant actions occur.

• Counting is helpful:
• How many total moves has this animal made?
• How many times has it eaten?  Fought?

• Remembering recent actions in attributes is helpful:
• Which direction did the animal move last?

• How many times has it moved that way?

• Did the animal eat the last time it was asked?
• How many steps has the animal taken since last eating?
• How many fights has the animal been in since last eating?

16



Critter exercise: Aardvark

• Write a critter class Aardvark:

Method Behavior

__init__

eat Eats 3 pieces of food and then stops

fight randomly chooses between pouncing and roaring

get_color pink if hungry and red if full

get_move walks up two and then down two 

__str__ "a" if hungry "A" otherwise

17



Critter exercise: Aardvark
• We need to know two things about its state:

• How much food has it eaten? 

• How many moves has it taken?

• Instance variables:

eaten (of type int)

moves (of type int)

• Method eat: increment eaten every time eat is called, return False after 3

• Method get_move: Walks up two and then down two

N N S S N N S S N N S S

1 2 3 4 1 2 3 4 1 2 3 4    use logic as in Rabbit
18


