CSc 110, Spring 2017/

Lecture 38: Critters
Adapted from slides by Marty Stepp and Stuart Reges




Calling overridden methods

* Subclasses can call overridden methods with super
super (ClassName, self) .method (parameters)

 Example:

class Rabbit (Critter):
def init (self) :
super (Rabbit,self). init ()
self. moves = 0 - -
self. hungry = False

What class is Rabbit inheriting from?

What method did Rabbit override above?

What code creates an instance of the class Rabbit?

What code would cause the str method of a class to be called?
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Inherit from the Critter class

* Syntax: class name (Critter) :

class NewAnimal (Critter) :
def eat ()
# returns True or False
def fight (opponent)
# ROAR, POUNCE, SCRATCH
def get color()
# returns a string for the color, e.g., "blue"
def get move ()
# returns NORTH, SOUTH, EAST, WEST, CENTER
def str ()




How the simulator works
* "Go" - loop:

* move each animal (get move)
* if they collide, fight
e if they find food, eat

* The simulator keeps score based on:
* How many animals of that kind are still alive
 How much food they have eaten
 How many other animals they have beaten in a fight

e Simulator is in control!
* get move is one move at a time
. (;o loops)
» Keep state (attributes)
* to remember for future moves 5




Development Strategy

e Simulator helps you debug
* smaller width/height

e fewer animals
* "Tick" instead of "Go"

* Write your own main
* call your animal's methods and print what they return




The Critter class

class Critter () :
def eat(self) :
return False

def fight (self, opponent):
return ATTACK FORFEIT

def get color(self):
return "grey"

def get move (self) :
return DIRECTION CENTER

def str (self):
return "?"




The Critter class constants

# Constants for attacks, directions
ATTACK POUNCE = 0

ATTACK ROAR =
ATTACK SCRATCH =
ATTACK FORFEIT =
DIRECTION NORTH
DIRECTION SOUTH
DIRECTION EAST
DIRECTION WEST
DIRECTION CENTER
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Critter exercise: Cougar

* Write a critter class Cougar:

Method Behavior
__1nit
eat Always eats.
fight Always pounces.

get color

Blue if the Cougar has never fought; red if he has.

get move | Walks west until he finds food; then walks east
until he finds food; then goes west and repeats.
str nen




Critter exercise: Cougar

* We need to know two things about its state:

* Has it ever fought?

e How much food it has eaten? Needed in order to return the correct direction.
(West/Eat/East/Eat/West/Eat/East, and so on)

 Two instance variables
fought (of type bool)
eaten (oftype int)

* Method eat:increment eaten every time eat is called

* Method get move: Walks west until he finds food; then walks east until he finds food,;
then goes west until west and repeats.

if eaten is even, walk west else walk east




The Cougar class

from Critter import *

class Cougar (Critter):
# returns a Cougar
def 1nit (self):
super (Cougar,self) .
self. fought = False
self. eaten =0

init () # call the superclass constructor

# returns "C" as a representation of the cougar
def str (self):

return "C"

# returns that the critter does want to eat
def eat (self):

self. eaten += 1

return True



The Cougar class- cont.

# returns the pounce attack
def fight(self, opponent):

self. fought = True

return ATTACK POUNCE

# returns west until the critter eats, returns east until it
# eats again and then repeats
def get move (self):
1f(self. eaten 5 2 == 0):
return DIRECTION WEST
else:
return DIRECTION EAST

# returns blue if the critter has never fought and red if it has
def get color(self):
i1f (not self. fought):
return "blue"
else:
return "red"



Debugging: Cougar

 Start small. Run the Cougar class.

* Inidle, create a Cougar object

e Call the methods to verify the behavior



Debugging Cougar

>>> ¢ = Cougar ()

>>> c.get color()

'"blue'

>>> c.get move ()

3

>>> c.eat ()

True

>>> c.get move ()

2

>>> c.fight ()

Traceback (most recent call last):

File "<pyshell#5>", line 1, in <module>

c.fight ()

TypeError: fight() missing 1 required positional argument:
opponent'

>>>




Debugging: Cougar

e Add Stone and Cougar to the list of methods Critters.py
e Use a small grid size, few animals
* Go tick by tick

e Simulator actions on each tick for each animal:
* Move the animal (call get move) in a random order
* If moved to occupied square, call both animials £ight methods
* |f moved onto food, call the animal's eat method.

* What the scores mean:
* How many animals of the class are alive
 How much food they have eaten
 How many other animals they have destroyed in a fight




|deas for state

* You must not only have the right state, but update that state properly
when relevant actions occur.

* Counting is helpful:
 How many total moves has this animal made?
* How many times has it eaten? Fought?

* Remembering recent actions in attributes is helpful:

 Which direction did the animal move last?
* How many times has it moved that way?

* Did the animal eat the last time it was asked?
* How many steps has the animal taken since last eating?
* How many fights has the animal been in since last eating?




Critter exercise: Aardvark

e Write a critter class Aardvark:

Method Behavior
__1nit
eat Eats 3 pieces of food and then stops
fight randomly chooses between pouncing and roaring

get color |pink if hungry and red if full

get_move |walks up two and then down two

str "a" if hungry "aA" otherwise




Critter exercise: Aardvark

* We need to know two things about its state:
* How much food has it eaten?
* How many moves has it taken?
* Instance variables:
eaten (oftype int)

moves (oftype int)

Method eat:increment eaten every time eat is called, return False after 3

Method get move: Walks up two and then down two
NNSSNNSSNNGSS
1 23412341234 < use logic as in Rabbit




