CSc 110, Spring 2017/

Lecture 38: Critters
Adapted from slides by Marty Stepp and Stuart Reges

Calling overridden methods

* Subclasses can call overridden methods with super
super (ClassName, self) .method (parameters)

 Example:

class Rabbit (Critter):
def init (self) :
super (Rabbit,self). init ()
self. moves = 0 - -
self. hungry = False

What class is Rabbit inheriting from?

What method did Rabbit override above?

What code creates an instance of the class Rabbit?

What code would cause the str method of a class to be called?

CSc 110 Critters

Ant

Bl

rd

Hippo
Vulture
WildCat

* behavior:

* eat
fight

get color
get move

Str

(creative)

eating food

animal fighting

color to display

movement

a single character to display

§ Critters Settings - O X
S[5[8] |- S| |- 5 5 5 S 8 2 1l 1
1 |6 a|s a1
2 EINEIBNE 4] |5 & 7 9|2
gl [4 S [[4f4] |85 3[3[5]5 HEIE 5
5 E] 5 S 1 .
9 i 5 a
5 . IHEEE 7 1 S b
B|- HEE &
b] 62 5 8
5 5 7|7 El 7|5 4 5 ElES
HE . . 7 1 Sl [2] [4[s
FNEE 2 5 3 S 4 s[2
5 - 1 5 3
. [. g - B c
- = 5 5[5] |4 i -1 |5 4
4] [5[2]8 7 s[4 S b 1[5
5 4 5[2 5[5] |6 4
B[S 2 5 5 | |5
7 8 . 5 1
1 2 2] S
5l |8 5 -5 . -2
HE! 1 1 HE 2 .
5 S 5 1 |- 5 b |5
F] g 8 B] 5
3 el |- [- FE .
8 -5 7l |8 5 g 5
b . S| |8 .
5[[1] [S 2 5 - 12|59
9 5 S 4
. 5 . S 3 IHEEEE
] 4] [1 9 . 3 |8 FiNE! B
5 4 7 1 214 a HHE
. 4|6 HlE 5] 4] |5
1 1 EEIEN S5 |S - 1 4
5[5]8 |7 5 i
1] [5 2 S S b 2] 5] S S
1 - 4] 5 5 5 5 1] 5 ==
HEENEE 3 |9 Sl 7|4
S ki 7 s 6] |6 5 . 7 7
HEE b
S 5 - [4 4 [0 S S
4 g9 |5 5 HE HII 531
s 5
] 3 SlE -] 5] 2 1
2 32 . HlE 3 S
F al5 1f- |- 55 5| 19
S 6l |8 5 S 5 7 .
5 6l |- B4 g 2 g 506
s 4 3[6[S bl HEE . - [4]5
5 . E] HEE 5 S
Stone: 212 Ant: 79 Bird: 27 Hippo: 294 Vulture: 51 WildCat: 0
2 Mowes .
Go Stop | Tick | Reset
L 1o | op| it e

3

Inherit from the Critter class

* Syntax: class name (Critter) :

class NewAnimal (Critter) :
def eat ()
returns True or False
def fight (opponent)
ROAR, POUNCE, SCRATCH
def get color()
returns a string for the color, e.g., "blue"
def get move ()
returns NORTH, SOUTH, EAST, WEST, CENTER
def str ()

How the simulator works
* "Go" - loop:

* move each animal (get move)
* if they collide, fight
e if they find food, eat

* The simulator keeps score based on:
* How many animals of that kind are still alive
 How much food they have eaten
 How many other animals they have beaten in a fight

e Simulator is in control!
* get move is one move at a time
. (;o loops)
» Keep state (attributes)
* to remember for future moves 5

Development Strategy

e Simulator helps you debug
* smaller width/height

e fewer animals
* "Tick" instead of "Go"

* Write your own main
* call your animal's methods and print what they return

The Critter class

class Critter () :
def eat(self) :
return False

def fight (self, opponent):
return ATTACK FORFEIT

def get color(self):
return "grey"

def get move (self) :
return DIRECTION CENTER

def str (self):
return "?"

The Critter class constants

Constants for attacks, directions
ATTACK POUNCE = 0

ATTACK ROAR =
ATTACK SCRATCH =
ATTACK FORFEIT =
DIRECTION NORTH
DIRECTION SOUTH
DIRECTION EAST
DIRECTION WEST
DIRECTION CENTER

I
S W N PO w N

Critter exercise: Cougar

* Write a critter class Cougar:

Method Behavior
__1nit
eat Always eats.
fight Always pounces.

get color

Blue if the Cougar has never fought; red if he has.

get move | Walks west until he finds food; then walks east
until he finds food; then goes west and repeats.
str nen

Critter exercise: Cougar

* We need to know two things about its state:

* Has it ever fought?

e How much food it has eaten? Needed in order to return the correct direction.
(West/Eat/East/Eat/West/Eat/East, and so on)

 Two instance variables
fought (of type bool)
eaten (oftype int)

* Method eat:increment eaten every time eat is called

* Method get move: Walks west until he finds food; then walks east until he finds food,;
then goes west until west and repeats.

if eaten is even, walk west else walk east

The Cougar class

from Critter import *

class Cougar (Critter):
returns a Cougar
def 1nit (self):
super (Cougar,self) .
self. fought = False
self. eaten =0

init () # call the superclass constructor

returns "C" as a representation of the cougar
def str (self):

return "C"

returns that the critter does want to eat
def eat (self):

self. eaten += 1

return True

The Cougar class- cont.

returns the pounce attack
def fight(self, opponent):

self. fought = True

return ATTACK POUNCE

returns west until the critter eats, returns east until it
eats again and then repeats
def get move (self):
1f(self. eaten 5 2 == 0):
return DIRECTION WEST
else:
return DIRECTION EAST

returns blue if the critter has never fought and red if it has
def get color(self):
i1f (not self. fought):
return "blue"
else:
return "red"

Debugging: Cougar

 Start small. Run the Cougar class.

* Inidle, create a Cougar object

e Call the methods to verify the behavior

Debugging Cougar

>>> ¢ = Cougar ()

>>> c.get color()

'"blue'

>>> c.get move ()

3

>>> c.eat ()

True

>>> c.get move ()

2

>>> c.fight ()

Traceback (most recent call last):

File "<pyshell#5>", line 1, in <module>

c.fight ()

TypeError: fight() missing 1 required positional argument:
opponent'

>>>

Debugging: Cougar

e Add Stone and Cougar to the list of methods Critters.py
e Use a small grid size, few animals
* Go tick by tick

e Simulator actions on each tick for each animal:
* Move the animal (call get move) in a random order
* If moved to occupied square, call both animials £ight methods
* |f moved onto food, call the animal's eat method.

* What the scores mean:
* How many animals of the class are alive
 How much food they have eaten
 How many other animals they have destroyed in a fight

|deas for state

* You must not only have the right state, but update that state properly
when relevant actions occur.

* Counting is helpful:
 How many total moves has this animal made?
* How many times has it eaten? Fought?

* Remembering recent actions in attributes is helpful:

 Which direction did the animal move last?
* How many times has it moved that way?

* Did the animal eat the last time it was asked?
* How many steps has the animal taken since last eating?
* How many fights has the animal been in since last eating?

Critter exercise: Aardvark

e Write a critter class Aardvark:

Method Behavior
__1nit
eat Eats 3 pieces of food and then stops
fight randomly chooses between pouncing and roaring

get color |pink if hungry and red if full

get_move |walks up two and then down two

str "a" if hungry "aA" otherwise

Critter exercise: Aardvark

* We need to know two things about its state:
* How much food has it eaten?
* How many moves has it taken?
* Instance variables:
eaten (oftype int)

moves (oftype int)

Method eat:increment eaten every time eat is called, return False after 3

Method get move: Walks up two and then down two
NNSSNNSSNNGSS
1 23412341234 < use logic as in Rabbit

