
Lecture 39: searching

CSc 110, Spring 2017

1

Sequential search

sequential search: Locates a target value in a list (may not be sorted) by
examining each element from start to finish. Also known as linear search.

 How many elements will it need to examine?

 Example: Searching the list below for the value 42:

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value 2 7 10 30 56 20 68 36 -4 25 42 50 22 92 15 85 103

i

2

Sequential (linear) search

sequential search: Even if the list is sorted, elements are examined in
the way (one after the other).

 Example: Searching the list below for the value 42:

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

i

3

Sequential (linear) search

Sequential search code:

def sequential_search(my_list, value):
for i in range(0, len(my_list)):

if (my_list[i] == value):
return i

return -1 # not found

Note that -1 is returned if the element is not found.

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

4

Sequential (linear) search

For a list of size N, how many elements will be checked worst case?

On average how many elements will be checked?

A list of 1,000,000 elements may require 1,000,000 elements to be
examined.

The number of elements to check grows in proportion to the size of
the list, i.e., it grows linearly.

5

Binary Search
 Binary search: a method of searching that takes advantage of sorted data.

 Consider a guessing game:

Someone thinks of a number between 1 and 100. You must guess the number.

On each round, you are told whether your number is low, high, or correct.

• Best strategy: use a first guess of 50

Eliminates half of the numbers immediately

On each round, half the numbers are eliminated:

100

50

25

…
6

Binary search

binary search: Locates a target value in a sorted list by successively
eliminating half of the list from consideration.

 How many elements will it need to examine?

 Example: Searching the list below for the value 42:

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

7

Keep track of indices for a min, mid and max.

Search for 42: Round 1.

list[mid] < 42

eliminate from min to mid (left half)

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

min mid max

8

Search for 42: Round 2.

list[mid] > 42

eliminate from mid to max (right half of what's left)

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

min mid max

9

Search for 42: Round 3.

list[mid] == 42

found!

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

min mid max

10

Binary search runtime

• For a list of size N, it eliminates ½ until 1 element remains.
N, N/2, N/4, N/8, ..., 4, 2, 1

• How many divisions does it take?
• Suppose N = 1024

1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1 (10 divisions)
• 10 = log2 (1024)

• Suppose we double the number the number of elements.
• How many divisions does it take?
• Suppose N = 2048

2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1 (11 divisions)
• 11 = log2 (2048)

11

Binary search runtime
• For a list of size N, it eliminates ½ until 1 element remains.

N, N/2, N/4, N/8, ..., 4, 2, 1

• How many divisions does it take?
• Suppose N = 1024

1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1 (10 divisions)
• Binary search examines a number of elements proportional to the number of divisions

• Think of it from the other direction:
• How many times do I have to multiply by 2 to reach N?

1, 2, 4, 8, ..., N/4, N/2, N
• Call this number of multiplications "x".

2x= N
x = log2 N

• Binary search examines a number of elements proportional to log of N.
12

Binary search code
Returns the index of an occurrence of target in a,

or a negative number if the target is not found.

Precondition: elements of a are in sorted order

def binary_search(a, target):

min = 0

max = len(a) - 1

while (min <= max):

mid = (min + max) // 2

if (a[mid] < target):

min = mid + 1

elif (a[mid] > target):

max = mid - 1

else:

return mid # target found

return -(min + 1) # target not found
13

Binary search

What do the following calls return when passed the above list?

binary_search(a, 2)

binary_search(a, 68)

binary_search(a, 12)

How many comparisons does each call do?

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 12 18 25 27 30 36 42 56 68 85 91 92 98 102

14

Comparing Binary vs. Sequential search

Binary search vs Sequential search: number of items examined

15

List size Binary search Sequential search

1 1 1

10 4 10

1,000 11 1,000

5,000 14 5,000

100,000 18 100,000

1,000,000 21 1,000,000

bisect

from bisect import *

searches an entire sorted list for a given value

returns the index the value should be inserted at to maintain sorted order

Precondition: list is sorted

bisect(list, value)

searches given portion of a sorted list for a given value

examines min_index (inclusive) through max_index (exclusive)

returns the index the value should be inserted at to maintain sorted order

Precondition: list is sorted

bisect(list, value, min_index, max_index)

16

Using bisect

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a = {-4, 2, 7, 9, 15, 19, 25, 28, 30, 36, 42, 50, 56, 68, 85, 92}

index1 = bisect(a, 42, 0, 16) # index1 is 11

index2 = bisect(a, 21, 0, 16) # index2 is 6

bisect returns the index where the value could be
inserted while maintaining sorted order

 if the value is already in the list the next index is returned

17

Sorting

• sorting: Rearranging the values in a list into a specific order
(usually into their "natural ordering").

• one of the fundamental problems in computer science
• can be solved in many ways:

• there are many sorting algorithms

• some are faster/slower than others

• some use more/less memory than others

• some work better with specific kinds of data

• some can utilize multiple computers / processors, ...

• comparison-based sorting : determining order by
comparing pairs of elements:
• <, >, …

18

Sorting algorithms

• bogo sort: shuffle and pray

• bubble sort: swap adjacent pairs that are out of order

• selection sort: look for the smallest element, move to front

• insertion sort: build an increasingly large sorted front portion

• merge sort: recursively divide the list in half and sort it

• heap sort: place the values into a sorted tree structure

• quick sort: recursively partition list based on a middle value

other specialized sorting algorithms:

• bucket sort: cluster elements into smaller groups, sort them

• radix sort: sort integers by last digit, then 2nd to last, then ...

• ...

19

Bogo sort

• bogo sort: Orders a list of values by repetitively shuffling them
and checking if they are sorted.
• name comes from the word "bogus"

The algorithm:

• Scan the list, seeing if it is sorted. If so, stop.

• Else, shuffle the values in the list and repeat.

• This sorting algorithm (obviously) has terrible performance!

20

Bogo sort code
Places the elements of a into sorted order.

def bogo_sort(a):

while (not is_sorted(a)):

shuffle(a)

Returns true if a's elements

#are in sorted order.

def is_sorted(a):

for i in range(0, len(a) - 1):

if (a[i] > a[i + 1]):

return False

return True
21

