CSc 110, Spring 2017/

Lecture 39: searching

1 \WJHEN A USER TAKES A PHOTO,
search history B B
THEY'RE IN A NATIONAL. PARK ...
SURE, ERSY GIS LOOKUR
GIMME A FEW H'l:ﬁ'ﬁ.
. AND CHECK WUHETHER
THE PHOTD 15 OF A BIRD.
T1L NEED A W.SEHRU-l
\ 500 years ago TEAM AND FwE YERRS.
Sy o erer—]
S / E—'é‘ cat pictures
| ~ s | funny cat pictures %
d y Mees | faking pictures of funny cats
— /\ 4 82| funny cats taking pictures
_ pictures of funny cats taking pictures
30 years ago yesterday
| INC3, IT CAN BE HARD TO EXPLAN
wronghands1.wordpress.com © John Atkinson, Wrong Hands THE DIFFERENCE BETWEEN THE EASY

AND THE VIRTUALLY" IMPOSSIBLE.

Sequential search

® sequential search: Locates a target value in a list (may not be sorted) by
examining each element from start to finish. Also known as linear search.

® How many elements will it need to examine?

® Example: Searching the list below for the value 42:

index| 0 |1(2|3|4|(5|6|7|8|9|10|11(12|13|14|15(16
value| 2 | 71030562068 |36|-4|25(42|50|22(92|15|85|103

Sequential (linear) search

® sequential search: Even if the list is sorted, elements are examined in
the way (one after the other).

® Example: Searching the list below for the value 42:

index| 0 |1(2|3|4|(5|6|7|8|9|10|11(12|13|14|15(16
value|-4| 2|7 (10|15|20(22{25|30|36(42|50|56|68|85|92|103

Sequential (linear) search

® Sequential search code:

def sequential search(my list, value):
for 1 in range(0, len(my list)):

if (my list[i] == value):
return 1
return -1 # not found

index| 0 |1(2|3|4|5|6|7|8|9|10|11(12|13|14|15| 16
value|-4| 2|7 (10(15|20(22(25|30|36(42|50|56|68|85|92|103

® Note that -1 is returned if the element is not found.

B —
Sequential (linear) search
® For a list of size N, how many elements will be checked worst case?

® On average how many elements will be checked?

® A list of 1,000,000 elements may require 1,000,000 elements to be
examined.

® The number of elements to check grows in proportion to the size of
the list, i.e., it grows linearly.

Binary Search

® Binary search: a method of searching that takes advantage of sorted data.

® Consider a guessing game:

Someone thinks of a number between 1 and 100. You must guess the number.
On each round, you are told whether your number is low, high, or correct.

 Best strategy: use a first guess of 50
Eliminates half of the numbers immediately
On each round, half the numbers are eliminated:
100
50
25

Binary search

® binary search: Locates a target value in a sorted list by successively
eliminating half of the list from consideration.

® How many elements will it need to examine?

® Example: Searching the list below for the value 42:
index| 0 (1|2 (3|4 |5|6|7 (8|9 |10(11|12(13|14|15]| 16
value|-4|2| 7 |10[15(20(22|25|30|36|42|50|56|68|85|92|103

Keep track of indices for a min, mid and max.

® Search for 42: Round 1.

list[mid] < 42
eliminate from min to mid (left half)

index| 0 |1(2|3|4|5|6|7|8(9|10|11(12|13|14|15| 16
value|-4| 2|7 (10|15|20(22(25|30|36(42|50|56|68|85|92|103

min mid max

® Search for 42: Round 2.

list[mid] > 42
eliminate from mid to max (right half of what's left)

index| 0 |1(2|3|4|5|6|7|8(9|10|11(12|13|14|15| 16
value|-4| 2|7 (10|15|20(22(25|30|36(42|50|56|68|85|92|103

min mid max

® Search for 42: Round 3.

list[mid] == 42
found!
index| 0 | 1 314|5(6|7|8|9]|10(11(12(13|14|15] 16
value| 4| 2 10(15120(22(25|130|36({42|50|56({68|85(92 103
min mid | max

Binary search runtime

e For a list of size N, it eliminates % until 1 element remains.
N, N/2, N/4,N/8, ..., 4,2, 1

* How many divisions does it take?
* Suppose N =1024

1024, 512, 256, 128, 64, 32, 16, 8,4, 2,1 (10 divisions)
* 10=log, (1024)

e Suppose we double the number the number of elements.
* How many divisions does it take?
* Suppose N =2048
2048, 1024, 512, 256, 128, 64,32, 16, 8,4, 2,1 (11 divisions)
11 =log, (2048)

Binary search runtime

* For a list of size N, it eliminates %2 until 1 element remains.
N, N/2, N/4, N/8, ..., 4,2, 1

 How many divisions does it take?

* Suppose N =1024
1024, 512, 256, 128, 64,32, 16, 8,4,2,1 (10 divisions)
* Binary search examines a number of elements proportional to the number of divisions

* Think of it from the other direction:
* How many times do | have to multiply by 2 to reach N?

1,2,4,8,...,N/4,N/2, N

e Call this number of multiplications "x".
2*=N
X =log, N

* Binary search examines a number of elements proportional to log of N.

Binary search code

Returns the index of an occurrence of target in a,
or a negative number if the target is not found.
Precondition: elements of a are in sorted order
def binary search(a, target):

min = 0

max = len(a) - 1

while (min <= max) :
mid = (min + max) // 2
1f (a[mid] < target):
min = mid + 1
elif (a[mid] > target):
max = mid - 1
else:
return mid # target found

return - (min + 1) # target not found

Binary search

index

10

11

12

13

14

15

16

value

12

18

25

27

30

36

42

56

68

85

91

92

98

102

What do the following calls return when passed the above list?

binary search(a, 2)

binary search(a,

binary search(a,

63)
12)

How many comparisons does each call do?

Comparing Binary vs. Sequential search

® Binary search vs Sequential search: number of items examined

1

10

1,000
5,000
100,000
1,000,000

11
14
18
21

1

10

1,000
5,000
100,000
1,000,000

bisect

from bisect import *

searches an entire sorted list for a given value
returns the index the wvalue should be inserted at to maintain sorted order
Precondition: list is sorted

bisect (list, value)

searches given portion of a sorted list for a given value
examines min_index (inclusive) through max index (exclusive)

returns the index the wvalue should be inserted at to maintain sorted order

H* H= H

Precondition: list is sorted

bisect (list, value, min_index, max_index)

Using bisect

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a = {-4, 2, 7, 9, 15, 19, 25, 28, 30, 36, 42, 50, 56, 68, 85, 92}
indexl = bisect(a, 42, 0, 106) # indexl is 11
index?2 = bisect(a, 21, 0, 106) # index2 is 6

®bisect returnsthe index where the value could be
inserted while maintaining sorted order

¢ if the value is already in the list the next index is returned

Sorting

- sorting: Rearranging the values in a list into a specific order
(usually into their "natural ordering").

 one of the fundamental problems in computer science

 can be solved in many ways:
« there are many sorting algorithms
some are faster/slower than others
some use more/less memory than others
some work better with specific kinds of data
some can utilize multiple computers / processors, ...

* comparison-based sorting . determining order by
omparmg pairs of elements:
<, >

Sorting algorithms

bogo sort: shuffle and pray

bubble sort: swap adjacent pairs that are out of order
selection sort: look for the smallest element, move to front
insertion sort: build an increasingly large sorted front portion
merge sort: recursively divide the list in half and sort it

heap sort: place the values into a sorted tree structure
quick sort: recursively partition list based on a middle value

other specialized sorting algorithms:
* bucket sort: cluster elements into smaller groups, sort them
- radix sort: sort integers by last digit, then 2nd to last, then ...

T ———
Bogo sort

* bogo sort: Orders a list of values by repetitively shuffling them
and checking if they are sorted.
« name comes from the word "bogus”

The algorithm:
 Scan the list, seeing if it is sorted. If so, stop.
* Else, shuffle the values in the list and repeat.

* This sorting algorithm (obviously) has terrible performance!

20

Bogo sort code

Places the elements of a into sorted order.
def bogo sort(a):
while (not 1s sorted(a)):
shuffle (a)

Returns true if a's elements
#are in sorted order.
def 1s sorted(a):
for 1 in range (0, len(a) - 1):
if (af[i] > af[i + 11):
return False

return True
21

