CSc 120

Introduction to Computer Programing |

Adapted from slides by
Dr. Saumya Debray

01-b: Python review

Lists of Lists

a list can consist of elements of
many types, including lists

>>>x =[[1,2,3], [4], [5, 6]]
>>> X

11, 2, 31, [4], [5, 6]] e

a list of lists is called a 2-d list

>>>

>>>>>>y =[['aa’, 'bb', 'cc'], ['dd’, 'ee’, 'ff'], ['hh', 'ii', 'jj']]
>>> >>> Y

[['aa’, 'bb', 'cc'], ['dd’, 'ee’, 'ff'], ['hh', "ii', 'jj']]

>>>

Lists of Lists

>>>x =1[[1,2,3], [4], [5, 6]]
>>> X

[[1,2, 3], [4], [5, 6]]

>>>

>>>

>>>>>>y =[['aa’, 'bb', 'cc'], ['dd",’

[['aa’, 'bb’, 'cc'], ['dd’, 'ee’, 'ff'], ['hh', "ii’, 'jj']]

>>>

a list can consist of elements of
many types, including lists

a list of lists is called a 2-d list

if the number of rows and
columns are equal, it is a grid

se', 'ff'], ['hh’, "ii", 'jj']]

Lists of Lists

>>>y
[['aa’, 'bb', 'cc'], ['dd', 'ee’, 'ff'], ['hh', 'ii', 'jj']]
>>>

>>> y[0]

['aa’, 'bb’, 'cc']

>>> y[1]

['dd’, 'ee’, 'ff']

>>> y[2]

['hh', it 'ji']

>>>

>>> |len(y)

>>>

a list can consist of elements of
many types, including lists

a list of lists is called a 2-d list

if the number of rows and
columns are equal, it is a grid

*must check the length of
each row

Lists of Lists

a list can consist of elements of
many types, including lists

>>>x =[[1,2,3], [4], [5, 6]]
>>> X

11, 2, 31, [4], [5, 6]] e

this is not a grid

>>>

>>>>>>y =[['aa’, 'bb', 'cc'], ['dd’, 'ee’, 'ff'], ['hh', 'ii', 'jj']]
>>> >>> Y

[['aa’, 'bb', 'cc'], ['dd’, 'ee’, 'ff'], ['hh', "ii', 'jj']]

>>>

EXERCISE

[['aa’, 'bb’, 'cc'], ['dd’, 'ee’, 'ff'], ['hh’, "ii', "jj']]
e how do we access 'bb'?
>>> y[0]

['aa’, 'bb’, 'cc']

>>> y[1]

['dd’, 'ee’, 'ff']

>>> y[2]

['hh', i, i

>>>y[O][1]

'bb'

>>>

EXERCISE

>>> x = [[18, 25, 36], [23, 25, 18], [20, 54, 7]]

>>> X write the code to sum
[[18, 25, 36], [23, 25, 18], [20, 54, 7]] the first column of x
>>>

>>r,total =0, 0

>>> while r <len(x):
total += x[r][0]
r+=1

>>> total
61
>>>

Lists

concatenation (+ and *) : similar to
strings

>>>x =[[12, 34, 56] |
>>>y=X*3

these operators create “shallow” copies
e due to list mutability, this can cause
unexpected behavior

>>>y
[[12, 34, 56], [12, 34, 56], [12, 34
>>>
y[0].append(78)
>>>
>>>y
[12, 34, 56, 78], [12, 34, 56, 78], [12, 34, 56, 7

>>>

®

Lists

Python 3.4.3 Shell

File Edit Shell Debug Options Window Help

Python 3.4.3 (default, Nov 17 2016, 01:08:31)

[ecC 4.8.4] on linux

Type "copyright", "credits" or "license()" for more informat . . .
on. concatenation (+ and *) : similar to
>>> x = [[12, 34, 56]] .
>>> Strlngs
>>>y=x*3

>>> y

[[12, 34, 56], [12, 34, 56], [12, 34, 56]] .
>>> these operators create “shallow” copies
>>> ¥10]-append(78) due to list mutability, this can cause

>>>

>>> y unexpected behavior

[[12, 34, 56, 78], [12, 34, 56, 78], [12, 34, 56, 78]]
X
\ .

>>>]

shallow copying

S —

o
N
\

12 34 56

Ln: 14 Col: 4.

Lists

Python 3.4.3 Shell

File Edit Shell Debug Options Window Help

Python 3.4.3 (default, Nov 17 2016, 01:08:31)
[ecC 4.8.4] on linux
Type "copyright", "credits" or "license()" for more informat

on. concatenation (+ and *) : similar to
>>> x = [[12, 34, 56]] .
>>> Strlngs
>>>y=x*3
>>> y
[[12, 34, 56], [12, 34, 56], [12, 34, 56]] .
>>> these operators create “shallow” copies
7> Y101 append(78) due to list mutability, this can cause
>>>y unexpected behavior
[[12, 34, 56, 78], [12, 34, 56, 78], [12, 34, 56, 78]]
>>> |
shallow copying X

T

-
/7 after y[0].append(78)

12 34 56 78

o
N
\

Ln: 14 Col: 4.

10

Lists: sorting

>>>x=[1,4,3, 2,5]
>>> X

[1, 4, 3, 2, 5]

>> x.sort()
>>> X

[1, 2, 3, 4, 5]
>
>>>y=[1,4,3,2,5]
>>>y

[1, 4, 3, 2, 5]

>>> sorted(y)

[1, 2, 3, 4, 5]

>>>y

[1, 4, 3, 2, 5]

>>>

sort() : sorts a list

11

Lists: sorting

>>>x=11, 4,3, 2, 5]
>>> X

[1, 4, 3, 2, 5]

>>> x.sort()

>>> X

[1, 2,3, 4,5]

>>>
>>>y=[1,4,3,2,5]
>>>y

[1, 4
>> sorted(y)
[1, 2, 3, 4, 5]
>>>y

[1, 4, 3, 2, 5]

sort() : sorts a list

sorted() : creates a sorted copy of a list;
the original list is not changed

12

oython review:
for loops

Loops Il: for

* The for loop iterates over the
items of any sequence in order

 for-statement syntax:

for Varin Expr:
stmt,

stmt,

* Expris evaluated. stmt, ... stmt, are executed
for each element of the sequence that Expr
produces; Var is assigned to each successive
element.

Loops II: for

>>>nums = [18, 3, 24, 63, 18, 4, 7]

>>> - -
* sequence: a list or string

>>> evens = [] (there are more, as you will see)
>>> for n in

fn%2==0:
evens.append(n)

>>> evens

[18, 24, 18, 4]
>>>

15

range

* range generates generates a
sequence of numbers

° range syntax:

range(start, stop, step)

range(start, stop)

Produces the sequence of integers from start to stop
(exclusive). If step is omitted, it defaults to 1.

for with range

>>>nums = [18, 3, 24, 63, 18, 4, 7]
>>>

* generates the numbers
>>> evens = [] 0123456

>>> for iinrange(0,len(nums)):
if numsl[i] % 2 ==0:

evens.append(numsli])
>>> evens

[18, 24, 18, 4]
>>>

17

EXERCISE

>>>x = [[18, 25, 36], [23, 25, 18], [20, 54, 7]]

>>> X write the code to sum

the first column of x
[[18, 25, 36], [23, 25, 18], [20, 54, 7]] using for and range
>>>
>>>total =0
>>> for i in range(0, len(x)):

total += x[i][O]

>>> total
61
>>>

18

EXERCISE

>>>x = [[18, 25, 36], [23, 25, 18], [20, 54, 7]]

>>> X write the code to sum

the first column of x
[[18, 25, 36], [23, 25, 18], [20, 54, 7]] using for (no range)
>>>
>>>total =0
>>> for row in Xx:

total += row[0]

>>> total
61
>>>

19

oython review:
ists < strings

Strings — lists

>>> names = "John, Paul, Megan, Bill, Mary"

>>> Names

'John, Paul, Megan, Bill, Mary'
split() : splits a string on whitespace
returns a list of strings

>>>

>> names.split()

['John,', 'Paul,’, 'Megan,’, 'Bill,’, 'Mary']

>>> names.split('n')
['Joh', ', Paul, Mega', ', Bill, Mary']
>>>

>>> names.split(',')
['John', ' Paul', ' Megan', ' Bill', ' Mary']

>>> 21

Strings — lists

>>> names = "John, Paul, Megan, Bill, Mary" ——
>>> names

'John, Paul, Megan, Bill, Mary'

>>>

>>> names.split()

['John,', 'Paul,’, 'Megan,’, 'Bill,’, 'Mary']

split() : splits a string on whitespace
returns a list of strings

>>>

>>> names.split('n') I

['Joh', ', Paul, Mega', ', Bill, Mary'] split(delim) :

>SS - delim, splits the string
e on delim

>>> names.split(',')

['John', ' Paul', ' Megan', ' Bill', ' Mary']

PR

>>>

22

Lists = strings

>>>x = ['one’, 'two', 'three’, 'four']
>>>

mnm 1mn .
>>>"-" join(x) delim.join(list) : joins the strings in list

'one-two-three-four' — using 'the string delim as the
delimiter
>>>
o — returns a string
>>> "1 1" join(x)
‘onel.ltwol.lthree!.!four’

>>>

23

String trimming

>>>x ="' abcd
>>
>>> x.strip()
‘abcd’
>>>
>>>y = "Hey!!!"

>>>

>>>y.strip("!")

'Hey'

>>> >>> 7 = "* M stuff stuff stuffr%%%**"
>>>

>>> z.strip("*"%")

'stuff stuff stuff’

x.strip() : removes whitespace from

// either end of the string x

returns a string

24

String trimming

| 1
>2> X = abcd x.strip() : removes whitespace from
>>> either end of the string x
>>> x.strip() .
'3bed! returns a string
>>>
>>>y = "Hey!!1" x.strip(string) : given an optional

argument string, removes

>>> any character in string from
>>>y.strip("!") either end of x
lHeyl

>>> >>> 7 = "F%Mstuff stuff stuffA%%%**"

>>>
>>> z.strip("*"%")
'stuff stuff stuff'

25

String trimming

x.strip() : removes whitespace from
either end of the string x

x.strip(string) : given an optional
argument string, removes
any character in string from
either end of x

rstrip(), Istrip() : similar to strip() but
trims from one end of

the string

26

EXERCISE

>>> text = "Bear Down, Arizona. Bear Down, Red and Blue."

>>> text_Ist = text.split() create a list of words with
>>> text Ist no punctuation

['Bear’, 'Down,’, 'Arizona.', 'Bear’, 'Down,’, 'Red’, 'and’, 'Blue.’]
>>> words_Ist =[]
>>> for w in words:

words_Ist.append(w.strip(".,"))

>>> words_Ist
['Bear’, 'Down’, 'Arizona’, '‘Bear’, 'Down’, 'Red’, 'and’, 'Blue']
>>>

27

oython review:
reading user input Il: file

/0

Reading user input Il: file I/O

Edit View Search Tools Documents Help
D Bomn v Esm | & Ko Elaa

suppose we want to read
(and process) a file
"this_file.txt"

ine

ine

29

Reading user input Il: file I/O

>>> infile = open("this_file.txt") —
this_file.txt (~/Teaching/CSc-120/Files) - gedit - ! a | X
>>> File Edit View Seaj:h Twlséocumen(s Hel;i . ~ Q q

[/ B open v & save

[0 this_file.txt * |
line 1 line 1 line 1

>>> for line in infile: — line 2 line 2

line 3 line 3 line 3

print(line)

line 1 line 1line 1

* open() the file

line 2 line 2 * read and process the file

line 3 line 3

>>>

Reading user input Il: file I/O

>>> infile = open("this_file.txt")

>>> T fileobj = open(filename)
>>> for line in infile: g ﬁ/ename: a strir)g
orint(line) * fileobj: a file object

line 1 line 1 line 1

line 2 line 2

line 3 line 3

>>>

31

Reading user input Il: file I/O

>>> infile = open("this_file.txt")

>>> * fileobj = open(filename)

>>> for line in infile: ¢ ﬁ/ename: a string
orint(line) \ * fileobj: a file object
 for var in fileobj:
* readsthefilealineata
time
* assigns the line (a string)

line 1linellinel to var

line 2 line 2

line 3 line 3

>>>

32

Reading user input Il: file I/O

>>> infile = open("this_file.txt")

>>> * fileobj = open(filename)

>>> for line in infile: * filename: a string
* fileobj: a file object

print(line) T
 for var in fileobj:
e reads the file aline at a
time
: ; : * assigns the line (a string)
line1linellinel — to var
. . Note that each line read
//’ . .
line 2 line 2 - ends in a newline ('\n')
character
line 3 line 3

>>>

33

Reading user input Il: file I/O

>>> infile = open("this_file.txt")
>>>
>>> for line in infile:

print(line)

line 1 line 1 line 1

At this point we've reached the

, , end of the file and there is nothing
line 2 line 2 left to read

line 3 line 3

>>>

34

Reading user input Il: file I/O

>>> infile = open("this_file.txt")
>>>
>>> for line in infile:

print(line)

at this point we've reached the end of

line 1line 1line 1
the file so there's nothing left to read

line 2 line 2
to re-read the file, we have to close it
_ . and then re-open it
line 3 line 3
>>>

>>> infile.close()
>>>infile = open("this_file.txt")

35

Reading user input Il: file I/O

>>> infile = open("this_file.txt")
>>>

>>> for line in infile: NOTE: we can use strip() to get rid

print(line.strip()) — of the newline character at the
end of each line

line 1line1linel
line 2 line 2
line 3 line 3

>>>

36

Writing output to a file

Python 3.4.3 Shell
Ele Edit Shell Debug Options Window Help

Python 3.4.3 (default, sep 14 2016,
[G6CC 4.8.4] on linux

Type "copyright", "credits" or "license()" for more informat||

ion.
>>> out_file = open('that_file.txt',
>>> x = input('input line: ')
input line: this is an input line
>>>
>>> x
'this is an input line'
>>>
>>> out_file.write(x.upper())
21
>>> out_file.close()
>>> -
>>> in file = open('that_file.txt',
>>> for line in in_file:
print('\"' + line + '\"')

"THIS IS AN INPUT LINE"
>>>

12:36:27)

W'

r)

)

[20/Gok 4|

open(filename, "w") : opens filename
in write mode, i.e., for output

37

Writing output to a file

Python 3.4.3 Shell

Ele Edit Shell Debug Options Window Help

Python 3.4.3 (default, sep 14 2016, 12:36:27)
[G6CC 4.8.4] on linux
Type "copyright", "credits" or "license()" for more informat
ion.
>>> out_file = open('that_file.txt', 'w')
>>> x = input('input line: ')
input line: this is an input line
>>>
>>> x
'this is an input line'
>>>
>>> out_file.write(x.upper()) -]
21
>>> out_file.close()
>>> -
>>> in file = open('that_file.txt', 'r'")
>>> for line in in_file:
print('\"' + line + '\"')

"THIS IS AN INPUT LINE"
>>>

[Ln: 20/Co: 4|

open(filename, "w") : opens filename
in write mode, i.e., for output

fileobj .wxite(string) : writes string to

fileobj

38

Writing output to a file

Python 3.4.3 Shell
Ele Edit Shell Debug Options Window Help

Python 3.4.3 (default, sep 14 2016, 12:36:27)

[G6CC 4.8.4] on linux

Type "copyright", "credits" or "license()" for more informat
ion.

>>> out_file = open('that_file.txt', 'w')

>>> x = input('input line: ')

input line: this is an input line

>>>

>>> x

'this is an input line’

>>>

>>> out_file.write(x.upper())

21

>>> out_file.close()

>>> -
>>> in file = open('that_file.txt', 'r'
>>> for line in in_file:

"THIS IS AN INPUT LINE"
>>>

')
print('\"' + line + '\"') \

open(filename, "w") : opens filename
in write mode, i.e., for output

fileobj .write(string) : writes string to
fileobj

—— open the file in read mode ("r") to see
what was written

39

oython review:
tuples

Tuples

Python 3.4.3 Shell o . . °
Ee— @ tuple is a sequence of values (like lists)
Python 3.4.3 (default, Nov 17 2016, 01:08:31) [l

[G6CC 4.8.4] on linux
Type "co i n, "
ion.

>>> x = 111,222,333,444,555
>>> x
(111, 222,

edits" or "license()" for mor:

333, 444,

555)

>>> x[0]

111

>>>

>>> x[2]

333

>>> x[-1]
555

>>>

>>> x[-2]
444

>>> |

[Ln: 18[Co: 4|

41

Tuples

Python 3.4.3 Shell
Ele Edit Shell Debug Options Window Help

a tuple is a sequence of values (like lists)

Python 3.4.3 (default, Nov 17 2016, 01:08:31)
[G6CC 4.8.4] on linux
Type "co i LI
ion.
>>> x = 111,222,333,444,555
>>> x
(111, 222, 333, 444, 555)
>>> x[0]
111
>>>
>>> x[2]
333
>>> x[-1]
555
>>>
>>> x[-2]

444
>>> |

'credits" or "license()" for more informat

| —— tuples use parens ()

* by contrast, lists use square brackets []
e parens can be omitted if no confusion is
possible
* special cases for tuples:
* empty tuple: ()
* single-element tuple: must have
comma after the element:

(111,)

42

Tuples

Python 3.4.3 Shell

Shel Debug Options Window

File E 1 Help

Python 3.4.3 (default, Nov 17 2016, 01:08:31)

[G6CC 4.8.4] on linux

Type "copyright", "credits" or "license()" for more informat
ion.

>>> x = 111,222,333,444,555

2, 333, 444, 555)

>>> x[0]
111

>>>

>>> x[2]
333

>>> x[-1]
555

>>>

>>> x[-2]
444
>>> |

a tuple is a sequence of values (like lists)

tuples use parens ()

* by contrast, lists use square brackets []
* parens can be omitted if no confusion is

possible
* special cases for tuples:
* empty tuple: ()
* single-element tuple: must have
comma after the element:

(111,)

indexing in tuples works similarly to
strings and lists

43

Tuples

Python 3.4.3 Shell

e ~ computing a length of a tuple: similar to
Python 3.4.3 (default, Nov 17 2016, 01:08:31) [l . .
!I[.‘;gz fllt.:c';;g;;lr::i;:t‘]:j-n:::::edits" or "license()" for more inform —/ Strlngs and ||Sts

ion.
> x = (111,222,333,444,555)
>>> len(x)

5

>>> x[2:]

(333, 444, 555)

>>>

>>> x[:4]

(111, 222, 333, 444)
>>>

>>> x[1:4]

(222, 333, 444)

>>>

>>> |

[17Gok 4|

44

Tuples

*Python 3.4.3 Shell

File Edit Shell Debug Options Window Help

Python 3.4.3 (default, Nov 17 2016, 01:08:31)

[G6CC 4.8.4] on linux

Type "copyright", "credits" or "license()" for more informat
ion.

>>> x = (111,222,333,444,555)

>>> len(x)

(333, 444, 555)
>>>

>>> x[:4]

(111, 222, 333, 444)
>>>

>>> x[1:4]
(222, 333, 444)
>>

|

computing a length of a tuple: similar to
strings and lists

computing slices of a tuple: similar to
strings and lists

45

Tuples

Python 3.4.3 Shell
Ele Edit Shell Debug Options Window Help

Python 3.4.3 (default, Nov 17 2016, 01:08:31) [l

+ and * work similarly on tuples as for
[G6CC 4.8.4] on linux

Type "copyright", "credits" or "license()" for more informat

lists and strings
111,222,333,444,555

>>> x
(6

+

b's
(111, 222, 333, 444, 555, 666, 777, 888)

>>>y * 3

777, 888,

666, 777, 888, 666, 777, 888)

v T31Gok 4|

46

Tuples

Python 3.4.3 Shell
Ele Edit Shell Debug Options Window Help

Python 3.4.3 (default, Nov 17 2016, 01:08:31)
[G6CC 4.8.4] on linux

ion.
>>> x = (111,222,333,444,555)
>>>
>> for y in x:
print(y)

111

222

333

444

555

>>>

>>> 222 in x
True

>>>

>>> 999 in x
False

>>>

Type "copyright", "credits" or "license()" for more informat

iterating through the elements of a
L tuple: similar to lists and strings

o 211Gok 4|

47

Tuples

Python 3.4.3 Shell
File Edit Shell Debug Options Window Help

Python 3.4.3 (default, Nov 17 2016, 01:08:31)
[G6CC 4.8.4] on linux
Type "copyright", "credits" or "license()" for more informat
ion.
>>> x = (111,222,333,444,555)
>>>
>>> for y in Xx:
print(y)

iterating through the elements of a
tuple: similar to lists and strings

checking membership in a tuple: similar

/ to lists and strings

48

Tuples

Python 3.4.3 Shell
Ele Edit Shell Debug Options Window Help

Python 3.4.3 (default, Nov 17 2016, 01:08:31) [l
[G6CC 4.8.4] on linux
Type "copyright", "credits" or "license()" for more informat
ion.
>>> x = (111,222,333,444,555)
>>>
>>> x[2]
333
>>>
> x[2] = 999
Traceback (most recent call last):
File "<pyshell#4>", line 1, in <module>
x[2] = 999
TypeError: 'tuple' object does not support item assignment
>

[141Gok 4|

tuples are not mutable

49

Sequence types: mutability

Python 3.4.3 Shell ez
Ele Edit Shell Debug Options Window Help

Python 3.4.3 (default, Nov 17 2016, 01:08:31) [l
[G6CC 4.8.4] on linux

Type "copyright", "credits" or "license()" for more informat
ion.

>>> x = (['aaa', 'bbb'], ['ccc', 'ddd'], ['eee'])

>>>

[0] = 'fff"
Traceback (most recent call last):
File "<pyshell#2>", line 1, in <module>
x[0] = 'fff’
TypeError: 'tuple' object does not support item assighment
>3
>>> x[0][0]

>>> x

(['£££f', 'bbb'], ['ccc', 'ddd'], ['eee'])
>>>

>>> x[0][0][0] = 'a°'

Traceback (most recent call last):
File "<pyshell#7>", line 1, in <module>
x[0][0][0] = 'a'
TypeError: 'str' object does not support item assignment
>>> |

o 211Gok 4|

tuples are immutable

50

Sequence types: mutability

Python 3.4.3 Shell
File Edit Shel Debug Options Window Help
Python 3.4.3 (default, Nov 17 2016, 01:08:31)
[G6CC 4.8.4] on linux
Type "copyright", "credits" or "license()" for more informat
ion.
>>> x = (['aaa', 'bbb'], ['ccc', 'ddd'], ['eee'])
>>>
>>> x[0] = 'fff’
Traceback (most recent call last):
File "<pyshell#2>", line 1, in <module>
x[0] = 'fff’
TypeError: 'tuple' object does not support item assignment

>>> x[0][0] = "fff"’
>>> x
(['f£ff",

'bbb'], ['ccc', 'ddd'], ['eee'])

>>> x[0][
Traceback (most recent call last):
File "<pyshell#7>", line 1, in <module>
x[oj[ojroy] = 'a’
TypeError: 'str' object does not support item assignment
>>> |

o 211Gok 4|

tuples are immutable

lists are mutable (even if the list is an

element of a [immutable] tuple)

51

Sequence types: mutability

File Edit Shel

Python 3.4.3 Shell
il Debug Options Window Help

Type
ion.
>>> x
>>>
>>> x

X
>>>
>>> x

>>> x

>>>

X

X

Traceback (most recent call last):
File "<pyshell#7>", line 1, in <module>

Python 3.4.3 (default, Nov 17 2016, 01:08:31)
[G6CC 4.8.4] on linux
"copyright", "credits" or "license()" for more informat

= (['aaa', 'bbb'], ['ccc', 'ddd'], ['eee'])

[0] = 'fff"

Traceback (most recent call last):
File "<pyshell#2>", line 1, in <module>

[0] = 'fff"

TypeError: 'tuple' object does not support item assignment

[01[0] = 'fff"

(['£££', 'bbb'], ['ccc', 'ddd'], ['eee'])

[ojrojroy = ‘a:

[o1roj[oy = ra’
: 'str' object does not support item a

- tuples are immutable

lists are mutable (even if the list is an
element of a [immutable] tuple)

strings are immutable (even if the string
I— isanelementofa [mutable] list)

[Ln: 21[Co: 4]

52

Sequence types: mutability

Python 3.4.3 Shell
Eile Edit Shell Debug Options Window Help 0 1

N

Python 3.4.3 (default, Nov 17 2016, 01:08:31) [l tuple

[GCC 4.8.4] on linux X ﬂ (/ \ \)\ (immutable)

Type "copyright", "credits" or "license()" for more informat

ion.
>>> x = (['aaa', 'bbb'], ['ccc', 'ddd'], ['eee'])
>>>
>>> x[0] = 'fff’
Traceback (most recent call last):
File "<pyshell#2>", line 1, in <module>
x[0] = '£ff'
TypeError: 'tuple' object does not support item assignment
>>>

list

—

>>> x[0][0] = 'fff"’ (mutable)
>>> x

(['£££f', 'bbb'], ['ccc', 'ddd'], ['eee'])

>>>

>>> x[0][0][0] = 'a°'

Traceback (most recent call last):
File "<pyshell#7>", line 1, in <module>
x[0]1[0][0] = ‘a’ elefe string
TypeError: 'str' object does not support item assignment

> (immutable)

[Ln: 21[Co: 4]

53

Sequence types: mutability

Python 3.4.3 Shell

e Ede el Dougiions indow 1 0 1 2
Python 3.4.3 (default, Nov 17 2016, 01:08:31) [l tu ple
[GCC 4.8.4] on linux X \’
Type "copyright", "credits" or "license()" for more informat / \ \ H bl
Immutable
>>> x = (['aaa', 'bbb'], ['ccc', 'ddd'], ['eee'])
>>>
>>> x[0] = 'fff’
Traceback (most recent call last):
File "<pyshell#2>", line 1, in <module>
x[0] = 'fff’ I
: ' object does not support item assignment u dat [/] [’] [/] ISt

>>> x[0][0] = 'fff"’ (mutable)
(['£££f', 'bbb'], ['ccc', 'ddd'], ['eee'])
>>>

>>> x[0][0][0] = 'a°'

Traceback (most recent call last):

File "<pyshell#7>", line 1, in <module>
x[0]1[0][0] = ‘a’ cjc ¢ elefe string
TypeError: 'str' object does not support item assignment
>>> | f | f|f

(immutable)

[Ln: 21[Co: 4]

54

Why use tuples?

At the implementation level, tuples are much simpler
than lists:

* lists are mutable; tuples are immutable

* this means that the implementation can process tuples
without having to worry about the possibility of updates

e lists have methods (e.g., append); tuples do not have
methods

=> Tuples can be implemented more efficiently than lists

Summary: sequence types

Sequence types include: strings, lists, and tuples

Operation
X in s

X not in s
s + t

s *norn * s
s[i]
s[i:j]
s[i:j:k]
len(s)
min(s)
max(s)

s.index(x[, i[, 311)

s.count(x)

Result

True if an item of s is equal to x, else False
False if an item of s is equal to x, else True
the concatenation of s and ¢

equivalent to adding s to itself n times

ith item of s, origin 0 The elements

slice of s from i toj are: i, i+k, i

slice of s from / to j with step k +2K, ...

length of s
smallest item of s
largest item of s

index of the first occurrence of x in s (at or after
index /i and before index j)

total number of occurrences of x in s

Source: https://docs.python.org/3/library/stdtypes.html#tsequence-types-list-tuple-range

56

EXERCISE

>>>x=1[(1,2,3),(4,5,6),(7,8,9)]

>>> x[0][0] = (2, 3, 4)
P A

>>>x[0]=[2,3,4]

what do you think will be
printed out?

what do you think will be
printed out?

57

oython review:
dictionaries

Dictionaries

* A dictionary is like an array, but it can be indexed
using strings (or numbers, or tuples, or any
immutable type)

* the values used as indexes for a particular dictionary are
called its keys

 think of a dictionary as an unordered collection of
key : value pairs

 empty dictionary: {}

* Itis an error to index into a dictionary using a non-
existent key

Dictionaries

Python 3.4.3 Shell
Ele Edit Shell Debug Options Window Help

Python 3.4.3 (default, Nov 17 2016, 01:08:31)
[G6CC 4.8.4] on linux

Type "copyright", "credits"
ion.

>>> crs_units = {}

or "license

>>> crs_units['csc 110'] = 4
>>> crs_units['csc 120'] = 4
>>> crs_units['csc 352'] = 3
>>> -

>>> course = 'csc 110

>>>

b>> crs_units[course]
4

>>>

>>> crs_units

{'csc 110': 4, 'csc 120': 4, 'csc 352': 3}
>>>

>>>

>>>

re informat

—— empty dictionary

[Cn: 11[Col

60

Dictionaries

Ele Edit Shell Debug Options Window Help

Python 3.4.3 Shell

[G6CC 4.8.4] on linux

ion.
>>> crs_units = {}

Python 3.4.3 (default, Nov 17 2016, 01:08:31)

r>>> crs_units['csc 110']
>>> crs_units['csc 120']

>>> crs_units['csc 352']
>

>>> course = 'csc 110
>>>

b>> crs_units[course]
4

>>>
>>> crs_units

>>>
>>>
>>>

{'csc 110': 4, 'csc 120':

4, 'csc 352': 3}

Type "copyright", "credits" or "license()" for more informat

- —
4
3

v T1GoE

empty dictionary

populating the dictionary

in this example, one item at a time

61

Dictionaries

*Python

File Edit Shell Debug Options Window Help

3.4.3 Shell*

Python 3.4.3 (default, Nov
[G6CC 4.8.4] on linux

Type "copyright", "credits"

ion.

>>> crs_units = {}

>>> crs_units['csc 110']
>>> crs_units['csc 120']
>>> crs_units['csc 352']
>>> -

>>> course = 'csc 110°'
>>>

17 2016, 01:08:31)

»

or "license()" for more informat

b>> crs_units[course]
4

>>>

>>> crs_units

{'csc 110': 4, 'csc 120':
>>>

>>>

>>>

4, 'csc 352': 3}

[Cn: 11[Cok: 0

empty dictionary
populating the dictionary

* inthis example, one item at a time

looking up the dictionary (indexing)

62

Dictionaries

*Python 3.4.3 Shell
Ele Edit Shell Debug Options Window Help

Python 3.4.3 (default, Nov 17 2016, 01:08:31)

[G6CC 4.8.4] on linux

Type "copyright", "credits" or "license()" for more informat
ion.

>>> crs_units = {}

>>> crs_units['csc 110'] = 4

>>> crs_units['csc 120'] = 4

>>> crs_units['csc 352'] = 3

>>>

>>> course = 'csc 110
>>>

b>> crs_units[course]
4

>>>
>>>

>>> crs_units
{'csc 110': 4, 'csc 120': 4, 'csc 352': 3}
>>> ‘\\\\\\\\\\\\\\\\\\\

empty dictionary

populating the dictionary
* inthis example, one item at a time

looking up the dictionary (indexing)

looking at the dictionary
e we can use this syntax to populate
the dictionary too

63

Dictionaries

Python 3.4.3 Shell
Ele Edit Shell Debug Options Window Help

(

Python 3.4.3 (default, Nov 17 2016, 01:08:31)
[G6CC 4.8.4] on linux
Type "copyright", "credits" or "license()" for more informat
ion.
>>> crs_units = {}
>>> crs_units['csc 110'] = 4
>>> crs_units['csc 120'] = 4
>>> crs_units['csc 352'] = 3
>>> -
>>> course = 'csc 110
>>>
>>> crs_units[course]
4
>>>
>>> crs_units
{'csc 110': 4, 'csc 120': 4, 'csc 352': 3}
>>>
>
>>> crs_units['mis 115']
Traceback (most recent call last):
File "<pyshell#12>", line 1, in <module>

crs_units['mis 115°']
KeyError: 'mis 115'

empty dictionary
populating the dictionary
* inthis example, one item at a time

looking up the dictionary (indexing)

looking at the dictionary
* we can use this syntax to populate
the dictionary too

\ indexing with a key not in the

dictionary is an error (KeyError)

64

Dictionaries

Python 3.4.3 Shell
Ele Edit Shell Debug Options Window Help

Python 3.4.3 (default, Nov 17 2016, 01:08:31)
[G6CC 4.8.4] on linux

Type "copyright", "credits" or "license()" for more informat

ion.
>>> crs_units = {'csc 110': 4, 'csc 120': 4, 'csc 352':
>>>

>>> crs_units['csc 110']

3}

>>>
>>> list(crs_units.keys())

['esc 120', 'csc 352', 'csc 110']
>>> |

v T1/Gok 4|

N

itializing the dictionary
in this example, several items at once

65

Dictionaries

Python 3.4.3 Shell
Ele Edit Shell Debug Options Window Help

Python 3.4.3 (default, Nov 17 2016, 01:08:31)

[G6CC 4.8.4] on linux

Type "copyright", "credits" or "license()" for more informat
ion.

>>> crs_units = {'csc 110': 4, 'csc 120': 4, 'csc 352': 3}
>>> -

>>> crs_units['csc 110']

4

>>>

>>> list(crs_units.keys())

['esc 120', 'csc 352', 'csc 110']
>>> |

-\\\\\\\\\\\\\“\\\

initializing the dictionary
* in this example, several items at once

getting a list of keys in the dictionary

e useful since it’s an error to index into
a dictionary with a key that is not in it

66

Dictionaries

Python 3.4.3 Shell
Ele Edit Shell Debug Options Window Help

Python 3.4.3 (default, Nov 17 2016, 01:08:31)
[G6CC 4.8.4] on linux

Type "copyright", "credits" or "license()" for more informat

ion.
>>> crs _units = {'csc 110':4, 'csc 120': 4, 'csc 352':3}

>>> for crs in crs_units:

print("{0}: {1} units".format(crs, crs_units[crs]))

csc 120: 4 units
csc 352: 3 units
csc 110: 4 units
>

[13160k 4|

We can use a for loop to
iterate through a dictionary

67

Dictionaries

Python 3.4.3 Shell
Edit shell Debug Options Window

File Help

Python 3.4.3 (default, Nov 17 2016, 01:08:31)

[G6CC 4.8.4] on linux

Type "copyright", "credits" or "license()" for more informat
ion.

crs_units = {'csc 110':4, 'csc 120': 4, 'csc 352':3}

>>> for crs in crs_units:
print("{0}: {1} units".format(crs, crs_units[crs]))

csc 120: 4 units I
csc 352: 3 units

csc 110: 4 units

>>> |

We can use a for loop to
iterate through a dictionary

Notice that this iteration may
not list the items in the
dictionary in the same order
as when they were inserted

68

EXERCISE

>>> crs_units = {'csc 352" : 3, 'csc 120': 4, 'csc 110": 4 }
>>> for crsin

print("{0} : {1} units".format(crs, crs_units[crs])

csc 110 : 4 units How can we get the dictionary
: contents to be printed out in
csc 120 : 4 units P

sorted order of the keys?
csc 352 : 3 units (l.e., what goes in the box?)

>>>

69

