CSc 120

Introduction to Computer Programing I

Adapted from slides by
Dr. Saumya Debray

01-c: Python review

python review:
lists < strings

Strings — lists

>>> names = "John, Paul, Megan, Bill, Mary"

>>> Names

'John, Paul, Megan, Bill, Mary'
split() : splits a string on whitespace
returns a list of strings

>>>

>> names.split()

['John,', 'Paul,’, 'Megan,’, 'Bill,’, 'Mary']

>>> names.split('n')
['Joh', ', Paul, Mega', ', Bill, Mary']
>>>

>>> names.split(',')
['John', ' Paul', ' Megan', ' Bill', ' Mary']

>>> 4

Strings — lists

>>> names = "John, Paul, Megan, Bill, Mary" ———
>>> names

'John, Paul, Megan, Bill, Mary'

>>>

>>> names.split()

['John,', 'Paul,’, 'Megan,’, 'Bill,’, 'Mary']
>>>

split() : splits a string on whitespace
returns a list of strings

>>> names.split('n')

['Joh', ', Paul, Mega', ', Bill, Mary'] split(delim) :

>SS - delim, splits the string
e on delim

>>> names.split(',')

['John', ' Paul', ' Megan’, ' Bill', ' Mary'] |

>>>

Lists — strings

>>>x = ['one’, 'two', 'three’, 'four']
>>>

mnm 1mn .
>>>"-" join(x) delim.join(list) : joins the strings in list

'one-two-three-four' — using 'the string delim as the
delimiter
>>>
o — returns a string
>>> "1 1" join(x)
‘onel.ltwol.lthree!.!four’

>>>

String trimming

>>>x ="' abcd
>>
>>> x.strip()
‘abcd’
>>>
>>>y = "Hey!!!"

>>>

>>>y.strip("!")

'Hey'

>>> >>> 7 = "* M stuff stuff stuffr%%%**"
>>>

>>> z.strip("*"%")

'stuff stuff stuff’

x.strip() : removes whitespace from

// either end of the string x

returns a string

String trimming

| 1
>2> X = abcd x.strip() : removes whitespace from
>>> either end of the string x
>>> x.strip() .
'3bed! returns a string
>>>
>>>y = "Hey!!1" x.strip(string) : given an optional

argument string, removes

>>> any character in string from
>>>y.strip("!") either end of x
lHeyl

>>> >>> 7 = "F%Mstuff stuff stuffA%%%**"

>>>
>>> z.strip("*"%")
'stuff stuff stuff'

String trimming

x.strip() : removes whitespace from
either end of the string x

x.strip(string) : given an optional
argument string, removes
any character in string from
either end of x

rstrip(), Istrip() : similar to strip() but
trims from one end of

the string

EXERCISE

>>> text = "Bear Down, Arizona. Bear Down, Red and Blue."

>>> words = text.split() create a list of words with
>>> words no punctuation

['Bear’, 'Down,’, 'Arizona.', 'Bear’, 'Down,’, 'Red’, 'and’, 'Blue.’]
>>> words_Ist =[]
>>> for w in words:

words_Ist.append(w.strip(".,"))

>>> words_Ist
['Bear’, 'Down’, 'Arizona’, '‘Bear’, 'Down’, 'Red’, 'and’, 'Blue']
>>>

10

python review:
reading user input |I:

file 1/0

Reading user input Il: file 1/O

T LT
sSuppose we wa nt to read |{;ne;{1ne 1 e s
(and prOCESS) a ﬁle line 3 line 3 line 3

"this_file.txt"

12

Reading user input Il: file 1/O

>>> infile = open("this_file.txt") —
>SS g W@ e : Q% i

|| Bopen v save o

L this_file.txt \
line 1 line 1 line 1

>>> for line in infile: — line 2 line 2

line 3 line 3 line 3

print(line)

line 1 line 1line 1

* open() the file

line 2 line 2 * read and process the file

line 3 line 3

>>>

13

Reading user input Il: file 1/O

>>> infile = open("this_file.txt")

>>> T fileobj = open(filename)
>>> for line in infile: g ﬁ/ename: a strir_\g
orint(line) * fileobj: a file object

line 1 line 1 line 1

line 2 line 2

line 3 line 3

>>>

14

Reading user input Il: file 1/O

>>> infile = open("this_file.txt")

>>2> * fileobj = open(filename)
>>> for line in infile: * filename: a string
orint(line) \ . ﬁleobj.. a ﬁl.e Obj?Ct
 for var in fileobj:
* readsthefilealine ata

time
: - . * assigns the line (a string)
line1linellinel to var
line 2 line 2
line 3 line 3

>>>

15

Reading user input Il: file 1/O

>>> infile = open("this_file.txt")

>>> * fileobj = open(filename)

>>> for line in infile: . f{/ename! astring
orint(line) . ﬁleobj.. a ﬁI.e Obj?Ct
 for var in fileobj:
* reads the file aline at a
time

: - . * assigns the line (a string)
line 1line1linel — to var

, : ~———— Notethat each line read
line 2 line 2 - ends in a newline ('\n')

character

line 3 line 3

>>>

16

Reading user input Il: file 1/O

>>> infile = open("this_file.txt")
>>>
>>> for line in infile:

print(line)

line 1 line 1 line 1

At this point we've reached the

, , end of the file and there is nothing
line 2 line 2 left to read

line 3 line 3

>>>

17

Reading user input Il: file 1/O

>>> infile = open("this_file.txt")
>>>

>>> for line in infile;

print(line)
line 1line 1line 1 at this point we've reached the end of
the file so there's nothing left to read
line 2 line 2
to re-read the file, we have to close it
and then re-open it
line 3 line 3

>>>

>>> infile.close()

>>>infile = open("this_file.txt") 18

Reading user input Il: file 1/O

>>> infile = open("this_file.txt")
>>>
>>> for line in infile: NOTE: we can use strip() to get rid

print(line.strip()) — of the newline character at the
end of each line

line 1line1linel
line 2 line 2
line 3 line 3

>>>

19

Writing output to a file

>>> out_file = open("names.txt", "w"

>>> \ open(filename, "w") : opens filename
>>> name = input("Enter a name: ") in write mode, i.e., for output
Enter a name: Tom

>>>

>>> out_file.write(name + '\n')

4

>>>name = input("Enter a name: ")

Enter a name: Megan

>>> out_file.write(name + '\n')

6

>>> out_file.close()

>>> 20

Writing output to a file

>>> out_file = open("names.txt", "w"
>>>
open(filename, "w") : opens filename
>>> name = input("Enter d Name: ") in write mode, i.e., for output
Enter a name: Tom
>>> fileobj .write(string) : writes string
>>> out_file.write(name + '\n') " tofileobj
4
>>>name = input("Enter a name: ")
Enter a name: Megan
>>> out_file.write(name + '\n')
6
>>> out_file.close()

>>>
21

Writing output to a file

>>> in_file = open("names.txt", "r") —_ openthe file in read mode ("r")

>>> for line inin file: to see what was written

print(line)

Tom
Megan

Tom

Megan

22

python review:
tuples

>>>x = (111, 222, 333, 444, 555)
>>> X

a tuple is a sequence of values (like lists)

24

Tuples

>>>x = (111, 222, 333, 444, 555
>>> X

111, 222, 333, 444, 555)

a tuple is a sequence of values (like lists)

T tuples use parens ()
* by contrast, lists use square brackets []

>>> X[O * parens can be omitted if no confusion is
111 possible
* special cases for tuples:
>>> X[2] * empty tuple: ()
333 * single-element tuple: must have
comma after the element:
>>> x[-1] (111
555
>>> x[-2]
444

>>>

25

Tuples

>>>

>>>x =(111, 222, 333, 444, 555) a tuple is a sequence of values (like lists)
>>> X

(111, 222, 333, 444, 555) tuples use parens ()

* by contrast, lists use square brackets []
* parens can be omitted if no confusion is
possible
e special cases for tuples:
* empty tuple: ()
* single-element tuple: must have
comma after the element:

(111,)

indexing in tuples works similarly to
strings and lists

26

Tuples

>>>x = (111, 222, 333, 444, 555)

>>i
>>> x[2:]
(333, 444, 555)
>>>
>>> x[:4]
(111, 222, 333, 444)
>>> x[1:4]
(222, 333, 444)
>>>

>>>

computing a length of a tuple:
similar to strings and lists

27

Tuples

>>>x = (111, 222, 333, 444, 555)

>>>
len(x)

computing a length of a tuple:
5 similar to strings and lists

> Xx[2:]
(333, 444, 555)
>>>

computing slices of a tuple:
similar to strings and lists

>>> x[:4]
(111, 222, 333, 444)
>>> x[1:4]

(222, 333, 444)

28

Tuples

>>>x = (111, 222, 333, 444, 555)

>>> X
+ and * work similarly on tuples as for
(111, 222, 333, 444, 555) lists and strings
>>>
>>>y = (666,777, 888)
>>>

(111, 222, 333, 444, 555, 666, 777, 888)
>>>

>>>y * 3

666, 777, 888, 666, 777, 888, 666, 777, 888
>>>

29

Tuples

>>>x =(111, 222, 333, 444, 555)
or item in x:

print(item) iterating through the elements of a
tuple: similar to lists and strings
111

222

333

444

555

>>>

>>> 222 1n X

True

>>>999 in x

False
>>>

30

Tuples

>>>x =(111, 222, 333, 444, 555)
>>> foritem in x:

print(item) iterating through the elements of a
tuple: similar to lists and strings

checking membership in a tuple:
similar to lists and strings

>>> 222 1In X
True
>>> 999 in x

False
>>>

31

Tuples

>>>x = (111, 222, 333, 444, 555)
>>> X
(111, 222, 333, 444, 555) tuples are not mutable

most recent call last):
File "<pyshell#102>", line 1, in <module>
X[2] =999
TypeError: 'tuple' object does not support item assignment
>>>

32

Sequence types: mutability

>>>x = (['aa’, 'bb'], ['cc’, 'dd'], ['ee']) tuples are immutable
>>> x[0] = 'ff’
Traceback (most recent call last):
File "<pyshell#108>", line 1, in <module>
x[0] = 'ff'
TypeError: 'tuple' object does not support item assignment

33

Sequence types: mutability

>>>x = (['aa’, 'bb'], ['cc', 'dd'], ['ee'])
>>> x[0] = 'ff'

Traceback (most recent call last):

tuples are immutable

File "<pyshell#108>", line 1, in <module>
x[0] = 'ff'
TypeError: 'tuple' object does not support item assignment
>>> x[0][0] = 'ff'
>>> X
(['ff', 'bb'], ['cc’, 'dd"], ['ee'])

lists are mutable

34

Sequence types: mutability

>>>x = (['aa’, 'bb'], ['cc, 'dd'], ['ee'])
>>> x[0] = 'ff'
Traceback (most recent call last):
File "<pyshell#108>", line 1, in <module>

tuples are immutable

x[0] = 'ff'
TypeError: 'tuple' object does not support item assignment
>>> x[0][0] = 'ff' lists are mutable
>>> X

(['ff', 'bb'], ['cc’, 'dd'], ['ee'])
>>> x[0][0][0] = 'a’
Traceback (most recent call last): strings are immutable
File "<pyshell#112>", line 1, in <module>
x[0][0][O] = "a°
TypeError: 'str' object does not support item assignment
>>>

35

Sequence types: mutability

Python 3.4.3 Shell
Ele Edit Shell Debug Options Window Help

Python 3.4.3 (default, Nov 17 2016, 01:08:31)
[G6CC 4.8.4] on linux
Type "copyright", "credits" or "license()" for more informat
ion.
>>> x = (['aaa', 'bbb'], ['ccc', 'ddd'], ['eee'])
>>>
>>> x[0] = 'fff’
Traceback (most recent call last):
File "<pyshell#2>", line 1, in <module>
x[0] = '£ff'
TypeError: 'tuple' object does not support item assignment
>>>

>>> x[0][0] = "fff"’

>>> x

(['£££f', 'bbb'], ['ccc', 'ddd'], ['eee'])
>>>

>>> x[0][0][0] = 'a°'

Traceback (most recent call last):
File "<pyshell#7>", line 1, in <module>
x[0][0][0] = 'a’
TypeError: 'str' object does not support item assignment
>>> |

N

[Ln: 21[Co: 4]

—

\

]

[/

]

tuple
(immutable)

list
(mutable)

string
(immutable)

36

Sequence types: mutability

Python 3.4.3 Shell
Ele Edit Shell Debug Options Window Help

Python 3.4.3 (default, Nov 17 2016, 01:08:31) [l

[G6CC 4.8.4] on linux

Type "copyright", "credits" or "license()" for more informat
ion.

>>> x = (['aaa', 'bbb'], ['ccc', 'ddd'], ['eee'])

>>>

>>> x[0] = "fff’
Traceback (most recent call last):

File "<pyshell#2>", line 1, in <module>

x[0] = "fff"’

' object does not support item assignment

>>> x[0][0] = "fff"’

(['£££', 'bbb'], ['ccc', 'ddd'], ['eee'])
>>>
>>> x[0][0][0] = 'a°'
Traceback (most recent call last):

File "<pyshell#7>", line 1, in <module>

x[0][0][0] = 'a’

TypeError: 'str' object does not support item assignment
>>> |

N

\

N\
|

)
]

[Ln: 21[Co: 4]

N

]

tuple
(immutable)

list
(mutable)

string
(immutable)

37

EXERCISE

>>>x=1[(1,2,3),(4,5,6),(7,8,9)]

>>> x[0][0] = (2; 3, 4) what do you think will be
< printed out?
>>> x[0] = [3, 3,4] what do you think will be

printed out?

38

Why use tuples?

At the implementation level, tuples are much simpler
than lists:

* lists are mutable; tuples are immutable

* this means that the implementation can process tuples
without having to worry about the possibility of updates

e lists have methods (e.g., append); tuples do not have
methods

=> Tuples can be implemented more efficiently than lists

39

Summary: sequence types

Sequence types include: strings, lists, and tuples

Operation
X in s

X not in s
s + t

s *norn * s
s[i]
s[i:j]
s[i:j:k]
len(s)
min(s)
max(s)

s.index(x[, i[, 311)

s.count(x)

Result

True if an item of s is equal to x, else False
False if an item of s is equal to x, else True
the concatenation of s and ¢

equivalent to adding s to itself n times

ith item of s, origin 0 The elements

slice of s from i to j are: i, i+k,

slice of s from i to j with step k i+2k, ...

length of s
smallest item of s
largest item of s

index of the first occurrence of x in s (at or after
index /i and before index j)

total number of occurrences of x in s

Source: https://docs.python.org/3/library/stdtypes.html#tsequence-types-list-tuple-range

40

python review:
dictionaries

Dictionaries

* A dictionary is like an array, but it can be indexed
using strings (or numbers, or tuples, or any
immutable type)

* the values used as indexes for a particular dictionary are
called its keys

 think of a dictionary as an unordered collection of
key : value pairs

 empty dictionary: {}

* Itis an error to index into a dictionary using a non-
existent key

Dictionaries

>>>crs_units={} —————— emptydictionary
>>> crs_units['csc 110'] =4

>>> crs_units['csc 120'] =4

>>> crs_units['csc 352'] =3

>>> course = 'csc 110

>>>

>>> crs_units[course]

4

>>> Crs_units

{'csc 110": 4, 'csc 120": 4, 'csc 352": 3}
>>>

Dictionaries

>>> Crs_units

=1}

empty dictionary

>>> Crs_units
>>> Crs_units
>>> Crs_units

'csc 110']
'csc 120"

'csc 352"

* in this example, one item at
a time

>>> course =
>>>

'csc 110

>>> crs_units[course]

4
>>> Crs_units

{'csc 110": 4, 'csc 120": 4, 'csc 352": 3}

>>2>

44

Dictionaries

>>> Crs_units
>>> Crs_units
>>> Crs_units
>>> Crs_units
>>> course =
>>>

= {}
'csc 110']

'csc 120'] =

'csc 352'] =
'‘csc 110°

>>> crs_units[course]

4

>>> Crs_units

{'csc 110" 4, 'csc 120": 4, 'csc 352": 3}

>>>

empty dictionary

populating the dictionary
* in this example, one item at
a time

looking using keys
/ (indexing)

45

Dictionaries

>>> crs_units = {} empty dictionary
>>> crs_units['csc 110'] =
. 1 17 _
>>> crs_units| csc 120 =4 oopulating the dictionary
>>> crs unitsl'csc 352'1 = 3 * in this example, one item at
— - | a time

>>> course = 'csc 110’
looking using keys

>>2 (indexing)
>>> Crs_units[course] * we can populate it
4 using this syntax

>>> Crs_units

<{'csc 110" 4, 'csc 120": 4, 'csc 352" 3D
>>>

46

Dictionaries

Python 3.4.3 Shell
File Edit Shell Debug Options Window Help

(

Python 3.4.3 (default, Nov 17 2016, 01:08:31)
[G6CC 4.8.4] on linux
Type "copyright", "credits" or "license()" for more informat
ion.
>>> crs_units = {}
>>> crs_units['csc 110'] = 4
>>> crs_units['csc 120'] = 4
>>> crs_units['csc 352'] = 3
>>> -
>>> course = 'csc 110
>>>
>>> crs_units[course]
4
>>>
>>> crs_units
{'csc 110': 4, 'csc 120': 4, 'csc 352': 3}
>>>
>
>>> crs_units['mis 115']
Traceback (most recent call last):
File "<pyshell#12>", line 1, in <module>

crs_units['mis 115°']
KeyError: 'mis 115'

empty dictionary
populating the dictionary
* inthis example, one item at a time

looking up the dictionary (indexing)

looking at the dictionary
* we can use this syntax to populate
the dictionary too

\ indexing with a key not in the

dictionary is an error (KeyError)

47

Dictionaries

Python 3.4.3 Shell
Ele Edit Shell Debug Options Window Help

Python 3.4.3 (default, Nov 17 2016, 01:08:31) [l
[G6CC 4.8.4] on linux
Type "copyright", "credits" or "license()" for more informat

ion.
>>> crs_units = {'csc 110': 4, 'csc 120': 4, 'csc 352': 3}
>>>

>>> crs_units['csc 110']

>>>
>>> list(crs_units.keys())

['esc 120', 'csc 352', 'csc 110']
>>> |

v T1/Gok 4|

N

itializing the dictionary
in this example, several items at once

48

Dictionaries

Python 3.4.3 Shell
Ele Edit Shell Debug Options Window Help

Python 3.4.3 (default, Nov 17 2016, 01:08:31)

[G6CC 4.8.4] on linux

Type "copyright", "credits" or "license()" for more informat
ion.

>>> crs_units = {'csc 110': 4, 'csc 120': 4, 'csc 352': 3}
>>> -

>>> crs_units['csc 110']

4

>>>

>>> list(crs_units.keys())

['esc 120', 'csc 352', 'csc 110']
>>> |

-\\\\\\\\\\\\\\“~\\

initializing the dictionary
* in this example, several items at once

getting a list of keys in the dictionary

e useful since it’s an error to index into
a dictionary with a key that is not in it

49

Dictionaries

Python 3.4.3 Shell
Ele Edit Shell Debug Options Window Help

Python 3.4.3 (default, Nov 17 2016, 01:08:31)
[G6CC 4.8.4] on linux

Type "copyright", "credits" or "license()" for more informat

ion.
>>> crs _units = {'csc 110':4, 'csc 120': 4, 'csc 352':3}

>>> for crs in crs_units:

print("{0}: {1} units".format(crs, crs_units[crs]))

csc 120: 4 units
csc 352: 3 units
csc 110: 4 units
>

[13160k 4|

We can use a for loop to
iterate through a dictionary

50

Dictionaries

Python 3.4.3 Shell
Edit shell Debug Options Window

File Help

Python 3.4.3 (default, Nov 17 2016, 01:08:31)

[G6CC 4.8.4] on linux

Type "copyright", "credits" or "license()" for more informat
ion.

crs_units = {'csc 110':4, 'csc 120': 4, 'csc 352':3}

>>> for crs in crs_units:
print("{0}: {1} units".format(crs, crs_units[crs]))

csc 120: 4 units I
csc 352: 3 units

csc 110: 4 units

>>> |

We can use a for loop to
iterate through a dictionary

Notice that this iteration may
not list the items in the
dictionary in the same order
as when they were inserted

51

EXERCISE

>>> crs_units = {'csc 352" : 3, 'csc 120': 4, 'csc 110": 4 }
>>> for crsin

print("{0} : {1} units".format(crs, crs_units[crs])

csc 110 : 4 units How can we get the dictionary
: contents to be printed out in
csc 120 : 4 units P

sorted order of the keys?
csc 352 : 3 units (l.e., what goes in the box?)

>>>

52

