
CSc 120
Introduction to Computer Programing II

Adapted from slides by
Dr. Saumya Debray

01-c:	Python	review	

2	

python review:
lists ↔ strings

3	

Strings → lists

4	

split()	:	splits	a	string	on	whitespace	
														returns	a	list	of	strings		

>>>	names	=	"John,	Paul,	Megan,	Bill,	Mary"	
>>>	names	
'John,	Paul,	Megan,	Bill,	Mary'	
>>>		
>>>	names.split()	
['John,',	'Paul,',	'Megan,',	'Bill,',	'Mary']	
>>>		
>>>	names.split('n')	
['Joh',	',	Paul,	Mega',	',	Bill,	Mary']	
>>>		
>>>	names.split(',')	
['John',	'	Paul',	'	Megan',	'	Bill',	'	Mary']	
>>>		

Strings → lists

5	

split()	:	splits	a	string	on	whitespace	
														returns	a	list	of	strings		

split(delim)	:		
															delim,	splits	the	string	
															on		delim	

>>>	names	=	"John,	Paul,	Megan,	Bill,	Mary"	
>>>	names	
'John,	Paul,	Megan,	Bill,	Mary'	
>>>		
>>>	names.split()	
['John,',	'Paul,',	'Megan,',	'Bill,',	'Mary']	
>>>		
>>>	names.split('n')	
['Joh',	',	Paul,	Mega',	',	Bill,	Mary']	
>>>		
>>>	names.split(',')	
['John',	'	Paul',	'	Megan',	'	Bill',	'	Mary']	
>>>		
	

Lists → strings

6	

delim.join(list)	:	joins	the	strings	in	list	
														using	the	string	delim	as	the	
														delimiter	
	
														returns	a	string	

>>>	x	=	['one',	'two',	'three',	'four']	
>>>		
>>>	"-".join(x)	
'one-two-three-four'	
>>>		
>>>	"!.!".join(x)	
'one!.!two!.!three!.!four'	
>>>		

String trimming

7	

x.strip()	:	removes	whitespace	from	
														either	end	of	the	string	x	
	
														returns	a	string	

>>>	x	=	'					abcd						'	
>>>		
>>>	x.strip()	
'abcd'	
>>>		
>>>	y	=	"Hey!!!"	
>>>		
>>>	y.strip("!")	
'Hey'	
>>>	>>>	z	=	"*%^^stuff	stuff	stuff^%%%**"	
>>>		
>>>	z.strip("*^%")	
'stuff	stuff	stuff'	

String trimming

8	

x.strip()	:	removes	whitespace	from	
														either	end	of	the	string	x	
	
														returns	a	string	

>>>	x	=	'					abcd						'	
>>>		
>>>	x.strip()	
'abcd'	
>>>		
>>>	y	=	"Hey!!!"	
>>>		
>>>	y.strip("!")	
'Hey'	
>>>	>>>	z	=	"*%^^stuff	stuff	stuff^%%%**"	
>>>		
>>>	z.strip("*^%")	
'stuff	stuff	stuff'	

x.strip(string)	:	given	an	opYonal	
																								argument	string,	removes	
																								any	character	in	string	from	
																								either	end	of	x	

String trimming

9	

x.strip()	:	removes	whitespace	from	
														either	end	of	the	string	x	

x.strip(string)	:	given	an	opYonal	
																								argument	string,	removes	
																								any	character	in	string	from	
																								either	end	of	x	

rstrip(),	lstrip()	:	similar	to	strip()	but	
																													trims	from	one	end	of	
																													the	string	

EXERCISE
	>>>	text	=	"Bear	Down,	Arizona.	Bear	Down,	Red	and	Blue."	
>>>	words	=	text.split()	
>>>	words	
['Bear',	'Down,',	'Arizona.',	'Bear',	'Down,',	'Red',	'and',	'Blue.']	
>>>	words_lst	=	[]	
>>>	for	w	in	words:	

	words_lst.append(w.strip(".,"))	
		

>>>	words_lst	
['Bear',	'Down',	'Arizona',	'Bear',	'Down',	'Red',	'and',	'Blue']	
>>>		
	
	
	
	

10	

create	a	list	of	words	with	
no	punctua6on	

python review:
reading user input II:

file I/O

11	

Reading user input II: file I/O

12	

suppose	we	want	to	read		
(and	process)	a	file		
"this_file.txt"	

Reading user input II: file I/O

13	

•  open()	the	file	
•  read	and	process	the	file	

>>>	infile	=	open("this_file.txt")	
>>>		
>>>	for	line	in	infile:	

	print(line)	
	

		
line	1	line	1	line	1	
	
line	2	line	2	
	
line	3	line	3	
	
>>>		

Reading user input II: file I/O

•  fileobj	=	open(filename)	
•  filename:	a	string		
•  fileobj:	a	file	object	

14	

>>>	infile	=	open("this_file.txt")	
>>>		
>>>	for	line	in	infile:	

	print(line)	
	

		
line	1	line	1	line	1	
	
line	2	line	2	
	
line	3	line	3	
	
>>>		
	

Reading user input II: file I/O

•  fileobj	=	open(filename)	
•  filename:	a	string		
•  fileobj:	a	file	object	

•  for	var	in	fileobj:	
•  reads	the	file	a	line	at	a	
Yme	

•  assigns	the	line	(a	string)	
to	var	

15	

>>>	infile	=	open("this_file.txt")	
>>>		
>>>	for	line	in	infile:	

	print(line)	
	

		
line	1	line	1	line	1	
	
line	2	line	2	
	
line	3	line	3	
	
>>>		
	

Reading user input II: file I/O

•  fileobj	=	open(filename)	
•  filename:	a	string		
•  fileobj:	a	file	object	

•  for	var	in	fileobj:	
•  reads	the	file	a	line	at	a	
Yme	

•  assigns	the	line	(a	string)	
to	var	

	
Note	that	each	line	read	
ends	in	a	newline	('\n')	
character	

16	

>>>	infile	=	open("this_file.txt")	
>>>		
>>>	for	line	in	infile:	

	print(line)	
	

		
line	1	line	1	line	1	
	
line	2	line	2	
	
line	3	line	3	
	
>>>		
	

Reading user input II: file I/O

At	this	point	we've	reached	the	
end	of	the	file	and	there	is	nothing	
leb	to	read	

17	

>>>	infile	=	open("this_file.txt")	
>>>		
>>>	for	line	in	infile:	

	print(line)	
	

		
line	1	line	1	line	1	
	
line	2	line	2	
	
line	3	line	3	
	
>>>		
	

Reading user input II: file I/O

18	

>>>	infile	=	open("this_file.txt")	
>>>		

>>>	for	line	in	infile:	
	print(line)	

		

line	1	line	1	line	1	
	

line	2	line	2	
	

line	3	line	3	

	
>>>	

>>>	infile.close()	
>>>infile	=	open("this_file.txt")	

at	this	point	we've	reached	the	end	of	
the	file	so	there's	nothing	leb	to	read	

to	re-read	the	file,	we	have	to	close	it	
and	then	re-open	it	

Reading user input II: file I/O

19	

>>>	infile	=	open("this_file.txt")	
>>>		
>>>	for	line	in	infile:	

	print(line.strip())	
	

		
line	1	line	1	line	1	
line	2	line	2	
line	3	line	3	
	
>>>		
	

NOTE:	we	can	use	strip()	to	get	rid	
of	the	newline	character	at	the	
end	of	each	line	

Writing output to a file

20	

open(filename,	"w"):	opens	filename	
in	write	mode,	i.e.,	for	output	

>>>	out_file	=	open("names.txt",	"w")	
>>>		
>>>	name	=	input("Enter	a	name:	")	
Enter	a	name:	Tom	
>>>		
>>>	out_file.write(name		+		'\n')	
4	
>>>	name	=	input("Enter	a	name:	")	
Enter	a	name:	Megan	
>>>	out_file.write(name		+		'\n')	
6	
>>>	out_file.close()	
>>>		

Writing output to a file

21	

open(filename,	"w"):	opens	filename	
in	write	mode,	i.e.,	for	output	

>>>	out_file	=	open("names.txt",	"w")	
>>>		
>>>	name	=	input("Enter	a	name:	")	
Enter	a	name:	Tom	
>>>		
>>>	out_file.write(name		+		'\n')	
4	
>>>	name	=	input("Enter	a	name:	")	
Enter	a	name:	Megan	
>>>	out_file.write(name		+		'\n')	
6	
>>>	out_file.close()	
>>>		
	

fileobj.write(string):	writes	string	
to	fileobj	

Writing output to a file

22	

open	the	file	in	read	mode	("r")	
to	see	what	was	wrigen	

>>>	in_file	=	open("names.txt",	"r")	
>>>	for	line	in	in_file:	

	print(line)	
	

		
Tom	
	
Megan	

python review:
tuples

23	

Tuples

24	

a	tuple	is	a	sequence	of	values	(like	lists)	

>>>		
>>>	x	=	(111,	222,	333,	444,	555)	
>>>	x	
(111,	222,	333,	444,	555)	
>>>	x[0]	
111	
>>>	x[2]	
333	
>>>	x[-1]	
555	
>>>	x[-2]	
444	
>>>		

Tuples

25	

a	tuple	is	a	sequence	of	values	(like	lists)	

tuples	use	parens	()		
•  by	contrast,	lists	use	square	brackets	[]	

•  parens	can	be	omiged	if	no	confusion	is	
possible	

•  special	cases	for	tuples:	
•  empty	tuple:	()	
•  single-element	tuple:	must	have	

comma	aber	the	element:		
	

(111,)		

>>>		
>>>	x	=	(111,	222,	333,	444,	555)	
>>>	x	
(111,	222,	333,	444,	555)	
>>>	x[0]	
111	
>>>	x[2]	
333	
>>>	x[-1]	
555	
>>>	x[-2]	
444	
>>>		
	

Tuples

26	

a	tuple	is	a	sequence	of	values	(like	lists)	

tuples	use	parens	()		
•  by	contrast,	lists	use	square	brackets	[]	

•  parens	can	be	omiged	if	no	confusion	is	
possible	

•  special	cases	for	tuples:	
•  empty	tuple:	()	
•  single-element	tuple:	must	have	

comma	aber	the	element:		
	

(111,)		

>>>		
>>>	x	=	(111,	222,	333,	444,	555)	
>>>	x	
(111,	222,	333,	444,	555)	
>>>	x[0]	
111	
>>>	x[2]	
333	
>>>	x[-1]	
555	
>>>	x[-2]	
444	
>>>		
	

indexing	in	tuples	works	similarly	to	
strings	and	lists	

Tuples

27	

compuYng	a	length	of	a	tuple:	
similar	to	strings	and	lists	

>>>	x	=	(111,	222,	333,	444,	555)	
>>>	
len(x)	
5	
>>>	x[2:]	
(333,	444,	555)	
>>>		
>>>	x[:4]	
(111,	222,	333,	444)	
>>>	x[1:4]	
(222,	333,	444)	
>>>		
>>>		

Tuples

28	

compuYng	a	length	of	a	tuple:	
similar	to	strings	and	lists	

>>>	x	=	(111,	222,	333,	444,	555)	
>>>	
len(x)	
5	
>>>	x[2:]	
(333,	444,	555)	
>>>		
>>>	x[:4]	
(111,	222,	333,	444)	
>>>	x[1:4]	
(222,	333,	444)	
>>>		
>>>		

compuYng	slices	of	a	tuple:	
similar	to	strings	and	lists	

Tuples

29	

+	and	*	work	similarly	on	tuples	as	for	
lists	and	strings	

>>>	x	=	(111,	222,	333,	444,	555)	
>>>	x	
(111,	222,	333,	444,	555)	
>>>		
>>>	y	=		(666,	777,	888)	
>>>		
>>>	x	+	y	
(111,	222,	333,	444,	555,	666,	777,	888)	
>>>		
>>>	y	*	3	
(666,	777,	888,	666,	777,	888,	666,	777,	888)	
>>>		
	

Tuples

30	

iteraYng	through	the	elements	of	a	
tuple:	similar	to	lists	and	strings	

>>>	x	=	(111,	222,	333,	444,	555)	
>>>		for	item	in	x:	
															print(item)	

		
111	
222	
333	
444	
555	
>>>		
>>>	222	in	x	
True	
>>>	999	in	x	
False	
>>>		
	

Tuples

31	

iteraYng	through	the	elements	of	a	
tuple:	similar	to	lists	and	strings	

>>>	x	=	(111,	222,	333,	444,	555)	
>>>		for	item	in	x:	
															print(item)	

		
111	
222	
333	
444	
555	
>>>		
>>>	222	in	x	
True	
>>>	999	in	x	
False	
>>>		
	

checking	membership	in	a	tuple:	
similar	to	lists	and	strings	

Tuples

32	

tuples	are	not	mutable	

>>>	x	=	(111,	222,	333,	444,	555)	
>>>	x	
(111,	222,	333,	444,	555)	
>>	x[2]	
333	
>>>		
>>>	x[2]	=	999	
Traceback	(most	recent	call	last):	
		File	"<pyshell#102>",	line	1,	in	<module>	
				x[2]	=	999	
TypeError:	'tuple'	object	does	not	support	item	assignment	
>>>		
		

Sequence types: mutability

33	

tuples	are	immutable	>>>	x	=	(['aa',	'bb'],	['cc',	'dd'],	['ee'])	
>>>	x[0]	=	'ff'	
Traceback	(most	recent	call	last):	
		File	"<pyshell#108>",	line	1,	in	<module>	
				x[0]	=	'ff'	
TypeError:	'tuple'	object	does	not	support	item	assignment	

	
	

Sequence types: mutability

34	

tuples	are	immutable	
>>>	x	=	(['aa',	'bb'],	['cc',	'dd'],	['ee'])	
>>>	x[0]	=	'ff'	
Traceback	(most	recent	call	last):	
		File	"<pyshell#108>",	line	1,	in	<module>	
				x[0]	=	'ff'	
TypeError:	'tuple'	object	does	not	support	item	assignment	
>>>	x[0][0]	=	'ff'	
>>>	x	
(['ff',	'bb'],	['cc',	'dd'],	['ee'])	

	
	

lists	are	mutable		

Sequence types: mutability

35	

tuples	are	immutable	
>>>	x	=	(['aa',	'bb'],	['cc',	'dd'],	['ee'])	
>>>	x[0]	=	'ff'	
Traceback	(most	recent	call	last):	
		File	"<pyshell#108>",	line	1,	in	<module>	
				x[0]	=	'ff'	
TypeError:	'tuple'	object	does	not	support	item	assignment	
>>>	x[0][0]	=	'ff'	
>>>	x	
(['ff',	'bb'],	['cc',	'dd'],	['ee'])	
>>>	x[0][0][0]	=	'a'	
Traceback	(most	recent	call	last):	
		File	"<pyshell#112>",	line	1,	in	<module>	
				x[0][0][0]	=	'a'	
TypeError:	'str'	object	does	not	support	item	assignment	
>>>		
	
	

lists	are	mutable		

strings	are	immutable		

Sequence types: mutability

36	

a	 a	 a	

b	 b	 b	
d	 d	 d	

c	 c	 c	 e	 e	 e	

()	x	

[]	 []	 []	

0	 1	 2	 tuple	
(immutable)	

list	
(mutable)	

string	
(immutable)	

Sequence types: mutability

37	

a	 a	 a	

b	 b	 b	
d	 d	 d	

c	 c	 c	 e	 e	 e	

()	x	

[]	 []	 []	

0	 1	 2	 tuple	
(immutable)	

list	
(mutable)	

string	
(immutable)	f	 f	 f	

updates	

EXERCISE
>>>	x	=	[(1,	2,	3),	(4,	5,	6),	(7,	8,	9)]	
>>>	x[0][0]	=	(2,	3,	4)	
	
>>>	x[0]	=	[2,	3,	4]	
	

38	

what	do	you	think	will	be	
printed	out?	

what	do	you	think	will	be	
printed	out?	

Why use tuples?

At	the	implementaYon	level,	tuples	are	much	simpler	
than	lists:	
•  lists	are	mutable;	tuples	are	immutable	

•  this	means	that	the	implementaYon	can	process	tuples	
without	having	to	worry	about	the	possibility	of	updates	

•  lists	have	methods	(e.g.,	append);	tuples	do	not	have	
methods	

				

⇒ 	Tuples	can	be	implemented	more	efficiently	than	lists	

39	

Summary: sequence types

40	

Sequence	types	include:	strings,	lists,	and	tuples	

Source:	hgps://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range	

The	elements	
are:	i,	i+k,	
i+2k,	...	

python review:
dictionaries

41	

Dictionaries

• A	dicYonary	is	like	an	array,	but	it	can	be	indexed	
using	strings	(or	numbers,	or	tuples,	or	any	
immutable	type)	

•  the	values	used	as	indexes	for	a	parYcular	dicYonary	are	
called	its	keys	

•  think	of	a	dicYonary	as	an	unordered	collecYon	of							
key	:	value	pairs	

•  empty	dicYonary:	{}	

•  It	is	an	error	to	index	into	a	dicYonary	using	a	non-
existent	key	

42	

Dictionaries

43	

empty	dicYonary	>>>	crs_units	=	{}	
>>>	crs_units['csc	110']	=	4	
>>>	crs_units['csc	120']	=	4	
>>>	crs_units['csc	352']	=	3	
>>>	course	=	'csc	110'	
>>>		
>>>	crs_units[course]	
4	
>>>	crs_units	
{'csc	110':	4,	'csc	120':	4,	'csc	352':	3}	
>>>		
	

Dictionaries

44	

empty	dicYonary	>>>	crs_units	=	{}	
>>>	crs_units['csc	110']	=	4	
>>>	crs_units['csc	120']	=	4	
>>>	crs_units['csc	352']	=	3	
>>>	course	=	'csc	110'	
>>>		
>>>	crs_units[course]	
4	
>>>	crs_units	
{'csc	110':	4,	'csc	120':	4,	'csc	352':	3}	
>>>		
	

populaYng	the	dicYonary	
•  in	this	example,	one	item	at	

a	Yme	

Dictionaries

45	

empty	dicYonary	>>>	crs_units	=	{}	
>>>	crs_units['csc	110']	=	4	
>>>	crs_units['csc	120']	=	4	
>>>	crs_units['csc	352']	=	3	
>>>	course	=	'csc	110'	
>>>		
>>>	crs_units[course]	
4	
>>>	crs_units	
{'csc	110':	4,	'csc	120':	4,	'csc	352':	3}	
>>>		
	

populaYng	the	dicYonary	
•  in	this	example,	one	item	at	

a	Yme	

looking	using	keys	
(indexing)	

Dictionaries

46	

empty	dicYonary	>>>	crs_units	=	{}	
>>>	crs_units['csc	110']	=	4	
>>>	crs_units['csc	120']	=	4	
>>>	crs_units['csc	352']	=	3	
>>>	course	=	'csc	110'	
>>>		
>>>	crs_units[course]	
4	
>>>	crs_units	
{'csc	110':	4,	'csc	120':	4,	'csc	352':	3}	
>>>		
	

populaYng	the	dicYonary	
•  in	this	example,	one	item	at	

a	Yme	

looking	using	keys	
(indexing)	
•  we	can	populate	it	

using	this	syntax	

Dictionaries

47	

empty	dicYonary	

populaYng	the	dicYonary	
•  in	this	example,	one	item	at	a	Yme	

looking	up	the	dicYonary	(indexing)	

looking	at	the	dicYonary	
•  we	can	use	this	syntax	to	populate	

the	dicYonary	too	

indexing	with	a	key	not	in	the	
dicYonary	is	an	error	(KeyError)	

Dictionaries

48	

iniYalizing	the	dicYonary	
•  in	this	example,	several	items	at	once	

Dictionaries

49	

iniYalizing	the	dicYonary	
•  in	this	example,	several	items	at	once	

getng	a	list	of	keys	in	the	dicYonary	
•  useful	since	it’s	an	error	to	index	into	

a	dicYonary	with	a	key	that	is	not	in	it	

Dictionaries

We	can	use	a	for	loop	to	
iterate	through	a	dicYonary	

50	

Dictionaries

We	can	use	a	for	loop	to	
iterate	through	a	dicYonary	

51	

NoYce	that	this	iteraYon	may	
not	list	the	items	in	the	
dicYonary	in	the	same	order	
as	when	they	were	inserted	

EXERCISE
>>>	crs_units	=	{	'csc	352'	:	3,	'csc	120':	4,	'csc	110':	4	}	
>>>	for	crs	in		
															print("{0}	:	{1}	units".format(crs,	crs_units[crs])	
	
csc	110	:	4	units	
csc	120	:	4	units	
csc	352	:	3	units	
>>>	

52	

How	can	we	get	the	dic6onary	
contents	to	be	printed	out	in	
sorted	order	of	the	keys?	
(I.e.,	what	goes	in	the	box?)	

