CSc 120

Introduction to Computer Programming ||

Adapted from slides by
Dr. Saumya Debray

02: Problem Decomposition and Program Development

A common student [ament

__23
"I have this big programming assignment.
| don't know where to start."

Steps In writing a program
1. Understand what tasks the program needs to perform
2a. Figure out how to do those tasks

2b. Write the code

3. Make sure the program works correctly

An example

Problem statement:

"Write a program to compute student GPAs from their grades."

Steps In writing a program

» 1. Understand what tasks the program needs to perform

Step 1. Problem specification

* Before you start writing code, make sure you understand

exactl
natist
natist

natist
— how can

what your code needs to do.

ne input?
he output?

ne computation to be performed?
we tell that the program is working correctly?

* If necessary, ask questions to clarify these points.

* Time spent doing this is an investment, not a waste.

Example: cont'd

Problem statement:
"Write a program to compute student GPAs from their grades."

Example: cont'd

Problem statement:
"Write a program to compute student GPAs from their grades."

* Input:
— read from a file, or from the keyboard?
— what is the format?
— how many students?

Example: cont'd

Problem statement:
"Write a program to compute student GPAs from their grades."

* Output:
— to afile, or to the screen?
— what is the format?
— compute GPA for all students, or only specific students?

Example: cont'd

Problem statement:
"Write a program to compute student GPAs from their grades."

* Computation:

— how is a GPA computed?
o what information do we need?

10

Example: cont'd

Problem statement:
"Write a program to compute student GPAs from their grades."

* Testing:
— how can we tell whether the program is working correctly?

o how should we test it?

o how can we tell whether all the pieces of the program are working
properly?

11

Example: cont'd

Problem statement:
"Write a program to compute student GPAs from their grades."

* Input:

— read from a file, or from the keyboard?
from a file

— what is the format?
one student per line
format of each line: student name, course, : grade,, ..., course, : grade,
different students may take different numbers of courses

— how many students?
not fixed ahead of time

12

Example: cont'd

Problem statement:
"Write a program to compute student GPAs from their grades."

* Output:
— to afile, or to the screen?
to the screen

— what is the format?
one student per line
student name : GPA

— compute GPA for all students, or only specific students?
all students in the input file

13

Example: cont'd (digression: computing GPAs)

Suppose a student has the following grades:

B=3
CSc 110 4x4=16 C=?
CSc 352 3 3x2=6 D=1
CSc 391 1 A 1x4=4 E=0
TOTAL: 4+3+1=8 16+6+4=26

The student's GPA = (Total UxG) / (Total U) = 26/8 = 3.25

Example: cont'd

Problem statement:
"Write a program to compute student GPAs from their grades."

-)
_ There may be
— what is the computation to be performed? more than one
\ / way to do these
Need to:

— figure out the no. of units for each course
— translate letter grades to numbers (e.g., A=4,B=3, ...)

15

Steps In writing a program

1. Understand what tasks the program needs to perform
» 2a. Figure out how to do those tasks

2b. Write the code

3. Make sure the program works correctly

16

Step 2a. Problem decomposition (conceptual)

* Write down the task(s) the program needs to perform

repeat as needed

* pick a task A

* break A down into a set of simpler tasks A,, ..., A
- A, ..., A together accomplish A

n

before you start writing code to solve a problem, make sure you

know how to solve the problem yourself.

17

Steps In writing a program

1. Understand what tasks the program needs to perform
2a. Figure out how to do those tasks

» 2b. Write the code

3. Make sure the program works correctly

18

Step 2b. Problem decomposition (programming)

* Write a piece of code for each task that has to be performed

— initially the code will contain stubs, i.e., parts that have not yet
been fleshed out

— write down the task to be performed as a comment

* Decomposing a task into sub-tasks = fleshing out the code
for a stub
— repeat until no more stubs to flesh out

19

Example: GPA computation (conceptual)

top-level task

{ read a file containing student grades, compute GPAs, and write them out J

20

Example: GPA computation (conceptual)

top-level task

{ read a file containing student grades, compute GPAs, and write them out J

next level of
decomposition

[read the student} [compute each J [write out each J

grades file student's GPA student's GPA

21

Example: GPA computation (conceptual)

[read a file containing student grades, compute GPAs, and write them out J

| T

read the student compute each write out each
grades file student's GPA student's GPA

R

for each course C taken by the student, with grade G:
el X 2\ ~a

look up no. of convert grade G compute total GPA - total UXG
units U for C to a number UxG and total U total U

22

Example: GPA computation (conceptual)

[read a file containing student grades, compute GPAs, and write them out }

L |

dth g d 3 file of compute each write out each
read the StL.J ent read anie o CC.)UI’SES student's GPA student's GPA
grades file + no. of units

for each course C taken by the student, with grade G:
K

A —~A
look up no. of convert grade G compute total GPA = total UxG
units U for C to a number UxG and total U total U

23

Example: GPA computation (conceptual)

[read a file containing student grades, compute GPAs, and write them out }

L |

, compute each write out each
read the student read a file of courses [student's GPA J { student's GPA }
grades file + no. of units /\
/\ for each course C taken by the student, with grade G:
~ N ™ - E . =
look up no. of convert grade G compute total _ totallxG
split it split each [units U for C } [to a number } { UxG and total U } {GPA_ WUJ
into a list, student's
one list into a
element list of
per (course,
student grade)
\ L J

24

Example: GPA computation (conceptual)

As you decompose the problem, ask whether it is a “good”
(simple, efficient) decomposition

‘ read a file containing student grades, compute GPAs, and write them out J

A4

read the student | : read a file of courses | compute each write out each
grades file + no. of units student's GPA student's GPA

) - t) e) /\

for each course C taken by the student, with grade G:

split it split each
into a list, student's a— K A —a
one listinto a | look up no. of } { convert grade G J [compute total } [GPA) total UxG}
element list of units U for C to a number UxG and total U total U
per (course,
student grade)

25

Example: GPA computation (conceptual)

As you decompose the problem, ask whether it is a “good”
(simple, efficient) decomposition

‘ read a file containing student grades, compute GPAs, and write them out }

=

read the student
grades file

read a file of courses
+ no. of units

A4
compute each write out each
student's GPA student's GPA
BT ANSS

.
- .
-~ S

. —~ 4
e Y / ™\

split it split each for each course C taken by the student grade G:
into a list, student's a— K —A
one listinto a [look up no. of } [convert grade G \J [GPA - total UxG }
element list of units U for C to a number total U
per (course,
student grade)

26

[° What does this suggest?

Example: GPA computation (conceptual)

As you decompose the problem, ask whether it is a “good”
(simple, efficient) decomposition

‘ read a file containing student grades, compute GPAs, and write them out }

=

file of courses

K This structure suggests

that everyone’s GPA is
: for each course C taken by the student, with grade G:
computed first, then all L . ! .
GPAs are written out look up no. of J[convert grade G }[compute total J[GPA: botes U"G}
o units U for C to a number UxG and total U total U
* This is more complex
_ and less efficient -/

A4
compute each write out each
student's GPA student's GPA

27

Example: GPA computation (conceptual)

As you decompose the problem, ask whether it is a “good”
(simple, efficient) decomposition

‘ read a file containing student grades, compute GPAs, and write them out }

|I read the student | ‘ read a file of courses compute each write out each
4 o. of units student's GPA student's GPA
for each course C taken by the student, with grade G:

e What is a better
p) -~ X 'Y ~a
approach: J ook up no. of Mconve,tgradeg }[compute total MGPA: total UXG}

units U for C to a number UxG and total U total U

student grade)
| J J

28

Example: GPA computation (conceptual)

As you decompose the problem, ask whether it is a “good”

(simple, efficient) decomposition

‘ read a file containing student grades, compute GPAs, and write them out ’

\ 4

e of courses

/ A better approach S to\ig_'ofun.ts

|

compute each
student's GPA

write out each

student’s GPA as it is

Tor each course C taken by the student, with grade G:
-~ .\ —~a

look up no. of
units U for C

computed

I

convert grade G
to a number

compute total
UxG and total U

e

write out each
student's GPA

* This is simpler and
\ more efficient

!

29

Example: GPA computation (conceptual)

As you decompose the problem, ask whether it is a “good”
(simple, efficient) decomposition

=

read the student |

grades file
split it split each
into a list, student's
one listinto a
element list of
per (course,
student grade)

‘ read a file containing student grades, compute GPAs, and write them out ’

\ 4

[read a file of courses | (compute each
+ no. of units student's GPA

for each course C taken by the student, with grade G:
-~ K .\ —~a
compute total GPA = total UxG write out each
total U

UxG and total U student's GPA

convert grade G
to a number

look up no. of
units U for C

30

Example: GPA computation (programming)

Conceptual decomposition

[

read a file containing student grades,
compute GPAs, and write them out

1

-

_

pass : a placeholder statement

does nothing

useful for parts of the code
that have not yet been
fleshed out

Incremental Program Development

J

main(): read student grades file, compute GPAs,
write them out
def main():

pass
7

main()

31

Example: GPA computation (programming)

Conceptual decomposition

[read a file containing student grades, }
compute GPAs, and write them out

/\

|

read the student
grades file

|

E

ompute and write ou
each student's GPA

t}

Incremental Program Development

main(): read student grades file, compute GPAs,
write them out
def main():

grades =read_grades()

compute_gpas(grades)

read _grades() : read a grade file into a list of each
student’s grades
def read_grades():

pass

compute_gpas(grades) : compute and write out
the GPA for each student

def compute_gpas(grades):
pass

main()

32

Example: GPA computation (programming)

Conceptual decomposition

each student's GPA

[compute GPA J [write out GPA J

for each course C taken by the student, with grade G:

[compute and write ou'ﬂ

s N

B —f
look up no. convert compute total UxG
of units U gradeGtoa total UxG GPA=""""
for C number and total U

Incremental Program Development

compute _gpas(grades) : compute and write out
the GPA for each student
def compute_gpas(grades):
for student_grades in grades:
compute_student_gpa(student_grades)

compute_student _gpa(student data): compute

and write out an individual student’s GPA

def compute_student_gpa(student_grades):
pass

33

Example: GPA computation (programming)

Conceptual decomposition

each student's GPA

[compute GPA J [write out GPA J

[compute and write ou'ﬂ

for each course C taken by the student, with grade G:

s N

B —f
look up no. convert compute total UxG
of units U gradeGtoa total UxG GPA=""""
for C number and total U

Incremental Program Development

compute _student gpa(student data): compute
and write out an individual student’s GPA
def compute_student_gpa(student_grades):
for [course,grade] in student_grades:
compute the gpa
pass

write_gpal()

34

Example: GPA computation (programming)

Conceptual decomposition

each student's GPA

[compute GPA J [write out GPA J

for each course C taken by the student, with grade G:

[compute and write ou'ﬂ

s b N

B —
look up no. convert compute total UxG
of units U gradeGtoa total UxG GPA = total U
for C number and total U

Incremental Program Development

compute_student gpa(student _data): compute
and write out an individual student’s GPA
def compute_student_gpa(student_grades):

for [course,grade] in student_data:

def lookup_units(course):
pass

w
un

Example: GPA computation (programming)

Conceptual decomposition

each student's GPA

[compute GPA } [write out GPA }

[compute and write out}

for each course C taken by the student, with grade G:

s b N

B —f
look up no. convert compute total UxG
of units U gradeGtoa total UxG GPA=""""10
for C number and total U

Incremental Program Development

compute _student gpa(student data): compute
and write out an individual student’s GPA
def compute_student_gpa(student_grades):
for [course,grade] in student_data:
units = lookup_units(course)
gval = grade_value(grade)
weighted _gval += units * gval
total _units += units

gpa = weighted_gval / total_units
student_name = lookup _name(student_grades)
write_gpa(student_name, gpa)

def lookup_units(course):
pass

36

EXERCISE

Conceptual decomposition

read the student
grades file

splitit
into a list,
one
element
per
student

—

split each
student's
list into a
list of
(course,
grade)

—

Incremental Program Development

?

37

Steps 2a+2b. Problem decomposition (summary)

* Begin:
— identify the task(s) the program needs to do
— define a stub function for each task

conceptual step
programming step

 while not done:

— pick a task A and break it down into simpler tasks
A, .., A
— flesh out the stub for A to execute the code for

A, ..., A, (these maythemselves be stubs)

38

Steps In writing a program

1. Understand what tasks the program needs to perform
2a. Figure out how to do those tasks

2b. Write the code

» 3. Make sure the program works correctly

39

Step 3. Ensuring correctness

e Goals:

— the program produces the expected outputs for all (selected)
iInputs

e very often, this is the only thing that programmers check

* In general this is not enough
a program can produce the expected output "accidentally”

40

Passing test cases "accidentally”

* Problem spec:
— "Write a function grid_is_square(arglist) that returns True if arglist
is a square grid, i.e., its no. of rows equals its no. of columns."”

Passes half the

e Submitted "solution": test cases ...

def grid 1s square(arglist):
return True

... but is wrong!

41

Step 3. Ensuring correctness

e Goals:

— the program produces the expected outputs for all (selected)
Inputs

— each piece of the program behaves the way it's supposed to

— each piece is used the way it's supposed to be used
o any assumptions made by the code are satisfied

* Approach:
— add assertions in the code to pinpoint problems
— test the code to ensure that there are no problems

Invariants and assertions

* [nvariant: an expression at a program point that always
evaluates to True when execution reaches that point

* Assertion: a statement that some expression E is an invariant
at some point in a program
— Python syntax:
assert E
assert E, "error message"

EXERCISE

Write a function my_sqrt(n) that returns the square root of n. Use an
assert statement to enforce that n must not be negative.

import math
def my_sqgrt(n):

44

EXERCISE

Write a function my_sqrt(n) that returns the square root of n. Use an
assert statement to enforce that n must not be negative.

import math

def my_sqgrt(n):
assert n >=0, "negative argument to my_sqrt"
return math.sqgrt(n)

45

Example

compute_student gpa(student grades): compute
and write out an individual student’s GPA
def compute_student_gpa(student_grades):
weighted gval =0
total _units=0
for [course,grade] in student_grades:
units = lookup_units(course)
gval = grade_value(grade)

assert units >0 and gval >=0, “data error”

weighted_gval += units * gval
total_units += units

gpa = weighted_gval / total _units
student_name = lookup_name(student_grades)
write_gpa(student_name, gpa)

46

Example

compute_student_gpa(student_grades): compute lookup_units() returns the number of units
and write out an individual student’s GPA for a course
def compute_student gpa(student_grades): * e.g., lookup_units('CSc 120') > 4

weighted gval=0
total_units =0 __— grade_value() returns the numerical value

for [course,grade] in student_grades? of a grade
units = lookup_units(course) * e.g., grade_value(“C") 2 2

gval = grade_value(grade)

assert units >0 and gval >=0, “data error”

weighted_gval += units * gval
total_units += units

gpa = weighted_gval / total _units
student_name = lookup_name(student_grades)
write_gpa(student_name, gpa)

47

Example

compute_student gpa(student grades): compute
and write out an individual student’s GPA
def compute_student_gpa(student_grades):
weighted gval =0
total _units=0
for [course,grade] in student_grades:
units = lookup_units(course)
gval = grade_value(grade)

this assert states that all courses must have
nonzero units and that a grade value cannot

be negative
* guards against data entry errors

assert units >0 and gval >=0, “data error”

weighted_gval += units * gval
total_units += units

gpa = weighted_gval / total _units
student_name = lookup_name(student_grades)
write_gpa(student_name, gpa)

Example

this assert states that all courses must have
nonzero units and that a grade value cannot
be negative

* guards against data entry errors

def compute_student_gpa(student_grades):
weighted gval =0
total _units=0
for [course,grade] in student_grades:
units = lookup_units(course)

gval = grade_value(grade)

* |t’s better to catch errors early
* [t’s better to catch bad values close to
where they are computed

assert units > 0 and gval >=0, “data

weighted_gval += units * gval
total_units += units \ .
- So it would be to better to push these asserts
gpa = weighted_gval / total _units into the functions that compute these values

student_name = lookup_name(student_grades)
write_gpa(student_name, gpa)

Example

lookup_units(course, course_units) : looks up the
no. of units for a course
def lookup_units(course, course_units):
for crs, units in course_units:
if course == crs:
assert units > 0, “lookup_units: grade error’
return units

)

assert False, “lookup_units: course not found”

grade _value(grade) : returns the numerical value
for a letter grade
def grade_value(grade):

if grade == ‘A’ :
return 4

elif grade == ‘B’:
return 3

elif grade == ‘C’:
return 2

elif grade == ‘D’
return 1

elif grade == ‘E":
return O

else:

assert False, “grade_value: unknown grade”

50

Using asserts

* checking arguments to functions
— e.g., if an argument's value has to be positive

* checking data structure invariants
— e.g.,,i>=0andi<len(name)
* checking "can't happen" situations
— this also serves as documentation that the situation can't happen

e after calling a function, to make sure its return value is
reasonable

Steps In writing a program: summary

* Understand what the program needs to do before you start
coding

* Develop the program logic incrementally
— top-down problem decomposition

— incremental program development
o use stubs for as-yet-undeveloped parts of the program

* Program defensively
— figure out invariants that must hold in the program
— use asserts to express invariants in the code

52

