CSc 120

Introduction to Computer Programming Il

Adapted from slides by
Dr. Saumya Debray

05: Testing

Why test?

e Mars Climate Orbiter

— Purpose: to study the Martian
climate and to serve as a relay for
the Mars Polar Lander

— Disaster: Bad trajectory caused it to
disintegrate in the upper
atmosphere of Mars

—Why: Software bug - failure to
convert English units to metric
values (pound-seconds vs. newton-
seconds) as specified in the contract

Why test?

* THERAC-25 Radiation Therapy

—1985 to 1987: two cancer patients at the East Texas
Cancer Center in Tyler received fatal radiation overdose
(a total of 6 accidents) — massive overdose

—Why: Software bug - mishandled race condition (i.e.,
miscoordination between concurrent tasks)

Why test?

* London Ambulance Service

—Purpose: automate many of
the human-intensive processes
of manual dispatch systems
associated with ambulance
services in the UK — functions:
Call taking

—Failure of the London
Ambulance Service on 26 and
27 November 1992

o Load increased, emergencies

accumulated, system made
incorrect allocations

Purpose of testing

* Every piece of software is written with some
functionality in mind

* Testing aims to identify whether the program
meets its intended functionality

"testing can only prove the presence of bugs, not their
absence"

the more thoroughly your software is tested, the more
confidence you can have about its correctness

"Test until fear turns into boredom." — Kent Beck (?)

Testing and test cases

"thoroughly" # lots of test cases

def main():
) make sure you
X = input()
if x %2 ==1:
do_useful _computation() It isn’t enough to simply
have a lot of test cases.
else: They have to “cover” the

program adequately.

delete_all files()
send_rude_email _to_boss()

crash_computer()

Approaches to testing

Black-box testing White-box testing

* Focuses only on * Focuses on the code
functionality —examines the code to
—does not look at how the figure out what tests
code actually works to use
» Good fO][idtentifying * Good for identifying
missing features, in
misunderstandings of :;Jrisrsnd Programming

the problem spec

black-box testing

Black-box testing: what to test?

* Based purely on the desired functionality

shouldn’t be influenced by the particular code you wrote
(that’s white-box testing)

° Aspects to consider:
expected outcome
normal vs error

characterizing values
edge cases vs “regular” values

Black-box testing: Outcomes

 Choose tests for both normal and error behaviors
assumes that we know what the error situations are

e Desired program behavior:
on normal inputs: produce the expected behavior

on error inputs:
detect and indicate that an error occurred
then behave appropriately as required by the problem spec

* Passing a test:

the program passes a test if it shows the desired
behavior for that test

10

Black-box testing: Values

* Edge cases:

at or near the end(s) of the range of a value the program
is supposed to operate on

Examples:
“zero-related” : O, [], empty string, empty file, ...

“one-related” : 1, -1, list with one element, file with one
line, ...

(maybe) large values

e “Regular” values:
not edge cases

11

Example:

“Read a file with one number per line. Print the sum
of the numbers that occur on odd-numbered lines.”

Sample input file:

WNO P~

12

Exa Im p ‘ @ “Read a file with one number per line. Print the sum
of the numbers that occur on odd-numbered lines.”

Testing for outcome:
* no. of numbers =1 * a line has non-numeric
—0 adds characters
* no. of numbers =3 * empty line
—1add; 1 skip in-between o« more than one number
* no. of numbers =4 on a line

—1 add; 1 skip at end

* >4 numbers
—several add operations

13

“Read a file with one number per line. Print the sum
Exa M p | e of the numbers that occur on odd-numbered lines.”

Kinds of cases for normal behavior:

Edge cases Regular cases

e empty file * a file with several
numbers, one per line

e file with one number

Kinds of cases for error behavior:

* aline has nhon-numeric
characters

* empty line
e more than one number on a line

14

REVIEW

In black-box testing, what does the tester know about the code
being tested?

When black-box testing, what are the kinds of cases we should
test?

©)
O
O

How does white-box testing differ from black-box testing?

15

EXERCISE

Consider this program specification:
Write a program that reads a (possibly empty) file containing only

numbers (and whitespace) and prints out the difference between the
smallest and largest numbers. An empty input file should generate no

output.
Specify sequences of lines that exemplify each of the following:

a) two error cases
b) two edge cases

c) one normal case

16

white-box testing

White-box testing: what to test?

* |deally, that every path through the code works
correctly

but this can be prohibitively difficult and expensive

* Instead, what we often do is: g

check that the individual pieces of the program work
properly

use asserts of pre/postconditions to check that the pieces
interact properly

18

Unit testing

e Tests individual units of code, e.g., functions,
methods, or classes

e.g.: given specific test inputs, does the function behave
correctly?

CloudCoder!

useful for making programmers focus on the exact
behavior of the function being tested

e.g., preconditions, postconditions, invariants

helps find problems early

e |solate a unit and validate its correctness
e Often automated, but can be done manually

Code coverage

* Code coverage refers to how much of the code is
executed ("covered") by a set of tests
want to be at (or close to) 100%

coverage tools report which parts of the program were
executed, and how much

e.g., Coverage.py

* Figuring out how to increase coverage often leads
to testing edge cases .

Unit testing: practical heuristics

* Check both normal and error behaviors

* edge-case inputs:
zero values (0, empty list/string/tuple/file, ...)
singleton values (1, list/string/tuple/file of length 1, ...)
large values

e if statements: make sure each outcome (True/False)
is taken

* Loops: test 0, 1, >1 iterations

21

Unit testing: what to check?

* Not just “output is what we expect”
remember “accidental” success

* Check that invariants hold at key points

22

Unit testing: what to check?

* Not just “output is what we expect”
—remember “accidental” success

* Check that invariants hold at key points

if

\\\/@

23

Unit testing: what to check?

* Check that invariants hold at key points

loop

24

Unit testing: what to check?

* Check that invariants hold at key points

@Check that nothing breaks if the loop
does not execute at all

loop

25

Unit testing: what to check?

* Check that invariants hold at key points

@Check that nothing breaks if the loop
does not execute at all i

@Check that everything is initialized I op

properly when the loop is first entered

Unit testing: what to check?

* Check that invariants hold at key points

@Check that nothing breaks if the loop
does not execute at all

@Check that everything is initialized
properly when the loop is first entered

@Check that everything is OK after going
around the loop

27

Unit testing: summary

e Test normal and error values, edge cases
* |f statements: test all branches (if/elif/else)

* Loops: check invariants for:
O iterations
1 iteration
>] iteration

 Functions:
check return values

28

Example 1: buggy list-lookup

lookup(string, Ist) -- returns the
position where the given string
occurs in Ist.

def lookup(string, Ist):
foriin range(len(lst)):
if string == Ist[i]:
return i

29

Example 1: buggy list-

lookup(string, Ist) -- returns the
position where the given string
occurs in Ist.

def lookup(string, Ist):
[for i in range(len(Ist)):]
if string == Ist[i]:
return i

lookup

0, 1, >1 iterations = lists
of length 0, 1, 2

30

Example 1: (buggy) list-lookup

lookup(string, Ist) -- returns the
position where the given string

occurs in Ist 0, 1, >1 iterations = lists

of length 0, 1, 2
def lookup(string, Ist): both branches taken =

foriin range(len(lst)): string is at positions 0, 1
[if string == Ist]i]:

return i

31

Example 1: (buggy) list-lookup

lookup(string, Ist) -- returns the
position where the given string

occurs in Ist 0, 1, >1 iterations = lists

of length 0, 1, 2

def Iookup(string, lSt): both branches taken =
foriin range(len(lst)): string is at positions 0, 1

if string =.= Ist[i]: some possible test inputs:
return | (‘a', [1), (‘a', ['a']), (‘a", ['b",'a"])

32

Example 1: (buggy) list-lookup

lookup(string, Ist) -- returns the
position where the given string

occurs in Ist 0, 1, >1 iterations = lists

of length 0, 1, 2
def lookup(string, Ist): both branches taken =
foriin range(len(lst)): string is at positions 0, 1
if string =.= Ist[i]: some possible test inputs:
return | (‘a’, [1)} (‘a', ['a']), (‘a', ['b','a’])
Note: this will

catch the no-
return-value bug

33

Example 2: (buggy) average

average(lst) -- returns the
average of the numbers in Ist.

def average(lst):

sum=0
foriin range(len(lst)):
sum += Ist[i]

return sum/len(Ist)

34

Example 2: (buggy) average

average(lst) -- returns the

average of the numbers in Ist.
0, 1, >1 iterations = lists

def average(lst): of length 0, 1, 2
sum =0 /
[for i in range(len(lst)):

sum += Ist[i]

return sum/len(Ist)

35

Example 2: (buggy) average

average(lst) -- returns the

average of the numbers in Ist.

0, 1, >1 iterations = lists

def average(lst): of length 0, 1, 2

sum=0 some possible test inputs:
for iin range(len(lst)): (] [15] [5,12] .
sum += Ist[i]

return sum/len(Ist)

36

Example 2: (buggy) average

average(lst) -- returns the

average of the numbers in Ist.

0, 1, >1 iterations = lists

def average(lst): of length 0, 1, 2

sum=0 some possible test inputs:
foriin range(len(lst)): (1,171, 15, 12) |
sum += Ist[i]

return sum/len(Ist)

Note: this will catch the
divide-by-zero on empty list
bug

37

EXERCISE

Write four unit tests for the function below:

Returns a list consisting of the strings in wordlist
that end with tail.
def words_ending_with(wordlist, tail):

outlist =[]

for item in wordlist:

if item.endswith(tail):
outlist.append(item)
return outlist

38

Testing strategy

E A\

* Test as a part of program development L)
try out small tests even when the code is only Testing
partially developed (i.e., lots of stubs)

helps catch problems at function boundaries, e.g., number
and types of arguments

can help identify bugs in the design, e.g., missing pieces

e Start with tiny test inputs (work your way up to
small, then medium, then large)

problems found on tiny inputs are usually easier to
debug

