
CSc 120
Introduction to Computer

Programming II

Adapted from slides by
Dr. Saumya Debray

06:	Debugging	

Steps in software development

2	

Specifica2on	 Design	 Coding	

Tes2ng	
Debugging	

Maintenance	

release	

Steps in software development

3	

Specifica2on	 Design	 Coding	

Tes2ng	
Debugging	

Maintenance	

release	

debugging

4	

Invariants (reprise)
An	invariant	is	a	predicate	about	the	program	state	
that	should	always	be	true	if	the	program	is	correct	
‒ the	programmer	should	know	what	invariants	should	
hold	where	based	on	the	intended	func2onality	

5	

	
⇒ 	If	all	invariants	hold,	everywhere	in	the	program,	
on	all	runs,	then	the	program	must	be	correct	

⇒ 	If	a	program	is	not	working	correctly,	some	
(intended)	invariant	somewhere	does	not	hold	

Buggy vs non-buggy code
An	invariant's-eye	view	of	buggy	vs	non-buggy	
program	execu2on:	

6	

=	program	states	
			during	execu2on	

Buggy vs non-buggy code
An	invariant's-eye	view	of	buggy	vs	non-buggy	
program	execu2on:	

7	

2me	

=	program	states	
			during	execu2on	

=	all	invariants	hold	J	

non-buggy	

=	some	invariant	
			does	not	hold	

L	

J	J	
J	
J	 J	

buggy	

J	

J	
J	

L	
L	
L	

J	

debugging:	

L	 J	→	

What is a bug?
A	bug:	a	divergence	between	expecta2on	and	reality	

8	

Example:		
I	expect	this	program	to	print	a	sum	of	(non-nega2ve)	
integers.	

	
It’s	prin2ng	0.	

the debugging process

9	

The debugging process

	
	
1.  Find	the	earliest	point	where	an	invariant	is	not	

sa2sfied	
	

2.  Understand	why	the	invariant	fails	to	hold	
	

3.  Fix	the	code	so	that	the	invariant	holds	

10	

The debugging process
• Programs	that	need	debugging	oYen:	
‒ involve	a	lot	of	code	
‒ process	a	lot	of	data	
‒ use	complex	logic	
‒ (some	or	all	of	the	above)	

			

•  Figuring	out	the	earliest	point	where	an	invariant	is	
broken	may	not	be	easy	
‒ anything	you	can	do	to	speed	up	this	step	is	very	useful	

o  asserts	in	the	code	
o  “shrinking	the	search”	

11	

The debugging process

	
	
1.  Find	the	earliest	point	where	an	invariant	is	not	

sa2sfied	
	

2.  Understand	why	the	invariant	fails	to	hold	
	

3.  Fix	the	code	so	that	the	invariant	holds	

12	

Find	the	smallest	input	and	code	that	causes	the	
bug	to	show	up	(“shrinking	the	search")	

0.	

shrinking the search

13	

The debugging process

	
1.  Locate	the	bug	
‒ Find	the	first	place	where	an	invariant	is	not	sa2sfied	

2.  Understand	the	problem	
‒ Understand	why	the	invariant	fails	to	hold	

3.  Fix	the	code	

14	

Minimize	what	you	have	to	search	through	
−	Find	the	smallest	input	and	code	that	shows	the	bug		

0.	

0. Shrinking the search
• Goal:	get	the	bug	to	show	up	in	a	smaller	(shorter)	
run	of	the	program	
‒ reduce	the	size	(or	complexity)	of	the	input	data	while	
s2ll	ge`ng	the	bug	to	show	up	

	

‒ Example	1:	the	input	is	a	list	L	of	40,000	words.			
o  cut	L	into	two	pieces,	L1	and	L2,	of	about	20,000	words	each	
o  if	the	bug	shows	up	when	input	is	L1:	

•  repeat	the	process	using	L1	
o  elif	the	bug	shows	up	when	input	is	L2:	

•  repeat	the	process	using	L2	
o  else:	

•  repeat	the	process	using	a	middle	piece	of	L	

15	

discard	
irrelevant	
input	

0. Shrinking the search
• Goal:	get	the	bug	to	show	up	in	a	smaller	(shorter)	
run	of	the	program	
‒ reduce	the	size	(or	complexity)	of	the	input	data	while	
s2ll	ge`ng	the	bug	to	show	up	

	

‒ Example	2:	The	input	is	a	20	x	20	grid	of	leaers	G	
o  divide	G	into	smaller	pieces	G1,	G2,	G3,	G4	
o  for	each	smaller	piece	Gi:	

•  if	Gi	causes	the	bug	to	show	up:	repeat	using	Gi
•  else:	try	using	a	piece	from	the	middle	

16	

G1	 G2	

G3	 G4	

G	

if	the	bug	does	not	show	up	on	(some	of)	the	smaller	
pieces:	this	can	itself	give	clues	to	the	problem	

0. Shrinking the search
• Goal:	get	the	bug	to	show	up	in	a	smaller	(shorter)	
run	of	the	program	
‒ reduce	the	size	(or	complexity)	of	the	program	code	
while	s2ll	ge`ng	the	bug	to	show	up	

	

‒ Example	3:	Consider	a	program	to	analyze	rainfall	and	
temperature	data,	with	a	bug	in	the	rainfall	analysis	

17	

pr
og
ra
m
	c
od

e	

bad	value	for	rainfall	

0. Shrinking the search
• Goal:	get	the	bug	to	show	up	in	a	smaller	(shorter)	
run	of	the	program	
‒ reduce	the	size	(or	complexity)	of	the	program	code	
while	s2ll	ge`ng	the	bug	to	show	up	

	

‒ Example	3:	Consider	a	program	to	analyze	rainfall	and	
temperature	data,	with	a	bug	in	the	rainfall	analysis	

18	

pr
og
ra
m
	c
od

e	

bad	value	for	rainfall	

see	if	any	of	the	temperature	
code	can	be	commented	out	
without	losing	the	bug	

0. Shrinking the search
• Goal:	get	the	bug	to	show	up	in	a	smaller	(shorter)	
run	of	the	program	
‒ reduce	the	size	(or	complexity)	of	the	program	code	
while	s2ll	ge`ng	the	bug	to	show	up	

	

‒ Example	3:	Consider	a	program	to	analyze	rainfall	and	
temperature	data,	with	a	bug	in	the	rainfall	analysis	

19	

pr
og
ra
m
	c
od

e	

bad	value	for	rainfall	

see	if	any	of	the	temperature	
code	can	be	commented	out	
without	losing	the	bug	

(be	careful)	

finding the bug

20	

The debugging process

	
1.  Locate	the	bug	
‒ Find	the	first	place	where	an	invariant	is	not	sa2sfied	

2.  Understand	the	problem	
‒ Understand	why	the	invariant	fails	to	hold	

3.  Fix	the	code	

21	

0.	 Minimize	what	you	have	to	search	through	
−	Find	the	smallest	input	and	code	that	shows	the	bug		

1. Locating the bug
• Goal:	Find	the	earliest	place	in	the	code	where	an	
invariant	is	not	true	

22	

good	states	:	all		
invariants	are	true	

bad	states	:	some		
invariants	are	false	

J	
J	
J	

L	
L	
L	

L	

We	are	looking	for	the	
transi2on	from	good	
states	to	bad	states	

1. Locating the bug
• Goal:	Find	the	earliest	place	in	the	code	where	an	
invariant	is	not	true	
‒ we	can	work	forwards,	or	backwards,	or	a	combina2on	
of	both	

23	

J	
J	
J	

L	
L	
L	

L	

work	forward	from	a	
good	state	to	find	the	
first	bad	state	

work	backward	from	
a	bad	state	to	find	
the	last	good	state	

Inspecting program state
•  To	figure	out	whether	an	invariant	is	true	at	some	
point	in	the	code	at	run2me:	
‒ 	need	to	look	at	the	program’s	state*		

• Common	ways	of	inspec2ng	program	state:	
‒ use	print	statements	
‒ use	a	debugger	

o pause	the	program's	execu2on	at	specific	points	
•  step	through	the	program's	execuAon;	or	
•  set	breakpoints	at	the	desired	program	statements	

o  inspect	the	program’s	state	in	the	debugger	

24	

*	program	state	=	values	of	variables,	data	structures	

Working forward vs. backward
• Working	forward:	

starAng	at	a	good	state,	idenAfy	a	(later)	bad	state	
+ matches	the	direc2on	of	execu2on	⇒	easier	
−  the	program's	state	may	be	large	and	complex	

o we	may	not	know	which	part(s)	to	focus	on	
	

• Working	backward	
starAng	at	a	bad	state,	idenAfy	a	(earlier)	good	state	
+ easier	to	know	which	part(s)	of	the	program's	state	to	
focus	on	

− does	not	match	direc2on	of	execu2on	
o  use	breakpoints;	move	them	backwards	on	successive	runs	

25	

Working backward
• Given:	a	bad	state	(i.e.,	some	invariant	is	broken)	
• Approach	1:	
‒ think	of	possible	reasons	for	the	broken	invariant	

o  e.g.:	"we	didn't	look	at	the	last	element	of	the	list"	
‒ do	experiments	to	accept	or	reject	each	hypothesis	
‒ the	outcome	of	these	experiments	indicates	whether	
some	earlier	state	is	good	or	bad	

	

• Approach	2:	(if	Approach	1	is	difficult	to	apply)	
‒ look	at	an	earlier	state	to	see	if	it	is	also	bad	

o  e.g.:	if	a	func2on's	arguments	have	bad	values,	look	at	the	
values	of	variables	at	the	call	site		

26	

Locating the bug: example

27	

1	 …
2	 x = 0
3	 for …
4	 …
5	 x += …
6	 …
7	 y = 0
8	 while …
9	 y += …
10	 …
11	 z = x * y
12	 assert z > 0

28	

Invariant:	z	>	0	
Observa2on:	z	==	0	

1	 …
2	 x = 0
3	 for …
4	 …
5	 x += …
6	 …
7	 y = 0
8	 while …
9	 y += …
10	 …
11	 z = x * y
12	 assert z > 0 L	

Locating the bug: example

29	

1	 …
2	 x = 0
3	 for …
4	 …
5	 x += …
6	 …
7	 y = 0
8	 while …
9	 y += …
10	 …
11	 z = x * y
12	 assert z > 0

z	has	an	incorrect	
value	at	line	11	
	

so	something	is	
wrong	somewhere	
in	this	range	of	code	

Invariant:	z	>	0	
Observa2on:	z	==	0	

L	

Locating the bug: example

1	 …
2	 x = 0
3	 for …
4	 …
5	 x += …
6	 …
7	 y = 0
8	 while …
9	 y += …
10	 …
11	 z = x * y
12	 assert z > 0

30	

Hypothesis	1:	
x	==	0	at	line	11	

L	

Locating the bug: example

1	 …
2	 x = 0
3	 for …
4	 …
5	 x += …
6	 …
7	 y = 0
8	 while …
9	 y += …
10	 …
11	 z = x * y
12	 assert z > 0

31	

Hypothesis	1:	
x	==	0	at	line	11	

Experiment	1:	
check	x's	value	at	line	11	

L	

Locating the bug: example

1	 …
2	 x = 0
3	 for …
4	 …
5	 x += …
6	 …
7	 y = 0
8	 while …
9	 y += …
10	 …
11	 z = x * y
12	 assert z > 0

32	

Hypothesis	1:	
x	==	0	at	line	11	

L	

Observa8on	1:	
x	==	0	at	line	11	
Invariant:	x	≠	0	at	line	11	

Locating the bug: example

Experiment	1:	
check	x's	value	at	line	11	

1	 …
2	 x = 0
3	 for …
4	 …
5	 x += …
6	 …
7	 y = 0
8	 while …
9	 y += …
10	 …
11	 z = x * y
12	 assert z > 0

33	

Hypothesis	1:	
x	==	0	at	line	11	

Possible	reasons:	
•  x	==	0	at	line	6;	or	
•  x	was	set	to	0	in	lines			

7-10	L	

Observa8on	1:	
x	==	0	at	line	11	
Invariant:	x	≠	0	at	line	11	

Locating the bug: example

Experiment	1:	
check	x's	value	at	line	11	

1	 …
2	 x = 0
3	 for …
4	 …
5	 x += …
6	 …
7	 y = 0
8	 while …
9	 y += …
10	 …
11	 z = x * y
12	 assert z > 0

34	

Observa8on	1:	
x	==	0	at	line	11	
Invariant:	x	≠	0	at	line	11	

Hypothesis	2:	
x	==	0	at	line	6	

L	

Experiment	2:	
check	x's	value	at	line	6	

Locating the bug: example

1	 …
2	 x = 0
3	 for …
4	 …
5	 x += …
6	 …
7	 y = 0
8	 while …
9	 y += …
10	 …
11	 z = x * y
12	 assert z > 0

35	

Scenario		

1	

Observa8on	2:	
x	==	0	at	line	6	
invariant:	x	≠	0	at	line	6	

L	

Observa8on	1:	
x	==	0	at	line	11	
Invariant:	x	≠	0	at	line	11	

Hypothesis	2:	
x	==	0	at	line	6	

L	

Locating the bug: example

Experiment	2:	
check	x's	value	at	line	6	

1	 …
2	 x = 0
3	 for …
4	 …
5	 x += …
6	 …
7	 y = 0
8	 while …
9	 y += …
10	 …
11	 z = x * y
12	 assert z > 0

36	

Observa8on	2:	
x	==	0	at	line	6	
invariant:	x	≠	0	at	line	6	

Observa8on	1:	
x	==	0	at	line	11	
Invariant:	x	≠	0	at	line	11	

Hypothesis	2:	
x	==	0	at	line	6	

L	

Locating the bug: example

Invariant:	x	≠	0	
Observa2on:	x	==	0	

Scenario		

1	

L	 Experiment	2:	
check	x's	value	at	line	6	

Scenario		

1	
1	 …
2	 x = 0
3	 for …
4	 …
5	 x += …
6	 …
7	 y = 0
8	 while …
9	 y += …
10	 …
11	 z = x * y
12	 assert z > 0

37	

x	has	an	incorrect	
value	at	line	6	
	

so	something	is	
wrong	somewhere	
in	this	range	of	code	

Repeat	what	we	just	did,	
this	2me	star2ng	with	the	
value	of	x	at	line	6	

L	Invariant:	x	≠	0	
Observa2on:	x	==	0	

Locating the bug: example

1	 …
2	 x = 0
3	 for …
4	 …
5	 x += …
6	 …
7	 y = 0
8	 while …
9	 y += …
10	 …
11	 z = x * y
12	 assert z > 0

38	

Observa8on	1:	
x	==	0	at	line	11	

Experiment	2:	
check	x's	value	at	line	6	

Hypothesis	2:	
x	==	0	at	line	6	

Observa8on	2:	
x	≠	0	at	line	6	
invariant:	x	≠	0	at	line	6	

J	

L	

Observa8on	1:	
x	==	0	at	line	11	
Invariant:	x	≠	0	at	line	11	

Locating the bug: example
Scenario		

2	

1	 …
2	 x = 0
3	 for …
4	 …
5	 x += …
6	 …
7	 y = 0
8	 while …
9	 y += …
10	 …
11	 z = x * y
12	 assert z > 0

39	

Observa8on	2:	
x	≠	0	at	line	6	
invariant:	x	≠	0	at	line	6	

J	

L	

x	has	a	correct	value	at	
line	6	but	an	incorrect	
value	at	line	11	
	

so	something	is	wrong	
somewhere	in	this	
range	of	code	

Observa8on	1:	
x	==	0	at	line	11	
Invariant:	x	≠	0	at	line	11	

Locating the bug: example
Scenario		

2	

1	 …
2	 x = 0
3	 for …
4	 …
5	 x += …
6	 …
7	 y = 0
8	 while …
9	 y += …
10	 …
11	 z = x * y
12	 assert z > 0

40	

J	

L	

Observa8on	1:	
x	==	0	at	line	11	
Invariant:	x	≠	0	at	line	11	

Observa8on	2:	
x	≠	0	at	line	6	
invariant:	x	≠	0	at	line	6	

To	find	where	the	value	of	
x	becomes	0:	
	

1. We	can	work	forward	
from	line	6;	or	

2. we	can	work	backward	
from	line	11			

Locating the bug: example
Scenario		

2	

1	 …
2	 x = 0
3	 for …
4	 …
5	 x += …
6	 …
7	 y = 0
8	 while …
9	 y += …
10	 …
11	 z = x * y
12	 assert z > 0

41	

Hypothesis	1:	
x	==	0	at	line	11	

L	

Observa8on	1:	
x	≠	0	at	line	11	
Invariant:	x	≠	0	at	line	11	J	

Locating the bug: example

Experiment	1:	
check	x's	value	at	line	11	

Scenario		

3	

1	 …
2	 x = 0
3	 for …
4	 …
5	 x += …
6	 …
7	 y = 0
8	 while …
9	 y += …
10	 …
11	 z = x * y
12	 assert z > 0

42	

Hypothesis	1:	
x	==	0	at	line	11	

L	

Observa8on	1:	
x	≠	0	at	line	11	
Invariant:	x	≠	0	at	line	11	J	
Experiment	2:	
check	y's	value	at	line	11	

Locating the bug: example

Experiment	1:	
check	x's	value	at	line	11	

Scenario		

3	

1	 …
2	 x = 0
3	 for …
4	 …
5	 x += …
6	 …
7	 y = 0
8	 while …
9	 y += …
10	 …
11	 z = x * y
12	 assert z > 0

43	

Hypothesis	1:	
x	==	0	at	line	11	

L	

Observa8on	1:	
x	≠	0	at	line	11	
Invariant:	x	≠	0	at	line	11	

Observa8on	2:	
y	==	0	at	line	11	
Invariant:	y	≠	0	at	line	11	

L	

Locating the bug: example

Experiment	1:	
check	x's	value	at	line	11	

Scenario		

3	

Experiment	2:	
check	y's	value	at	line	11	

1	 …
2	 x = 0
3	 for …
4	 …
5	 x += …
6	 …
7	 y = 0
8	 while …
9	 y += …
10	 …
11	 z = x * y
12	 assert z > 0

44	

L	

Observa8on	2:	
y	==	0	at	line	11	
Invariant:	y	≠	0	at	line	11	L	

Observa8on	1:	
x	==	0	at	line	11	
Invariant:	x	≠	0	at	line	11	J	

J	 Check:	is	y	ini2alized	
correctly?	
Suppose	that	it	is	 J	

Locating the bug: example
Scenario		

3	

1	 …
2	 x = 0
3	 for …
4	 …
5	 x += …
6	 …
7	 y = 0
8	 while …
9	 y += …
10	 …
11	 z = x * y
12	 assert z > 0

45	

L	

Observa8on	2:	
y	==	0	at	line	11	
Invariant:	y	≠	0	at	line	11	L	

Observa8on	1:	
x	==	0	at	line	11	
Invariant:	x	≠	0	at	line	11	J	

something	is	wrong	with	
the	computa2on	of	y	
somewhere	in	this	range	
of	code	

J	

Locating the bug: example
Scenario		

3	

Locating the bug: summary
•  Find	the	earliest	point	A	in	the	program	where	
there	is	a	bad	state	
‒ i.e.,	assert	failed	or	incorrect	value	observed	

•  Iden2fy	a	variable	x	whose	value	at	A	is	incorrect	
•  Find	the	latest	point	where	the	value	of	x	is	correct	
• Repeat:	
‒ narrow	the	range	of	code	where	x's	value	changes	from	
correct	to	incorrect	

		un2l	you	see	the	problem	or	cannot	narrow	further	

46	

L	

J	

understanding the bug

47	

The debugging process

	
1.  Locate	the	bug	
‒ Find	the	first	place	where	an	invariant	is	not	sa2sfied	

2.  Understand	the	problem	
‒ Understand	why	the	invariant	fails	to	hold	

3.  Fix	the	code	

48	

0.	 Minimize	what	you	have	to	search	through	
−	Find	the	smallest	input	and	code	that	shows	the	bug		

2. Understanding the problem
• An	observed	bug	may	arise	due	to	many	different	
underlying	reasons	

	

• Unless	you	understand	the	reason,	you	cannot	be	
sure	that	your	changes	will	in	fact	fix	the	problem	
‒ recall	test	cases	that	may	pass	"accidentally"	

	

• Understanding	the	reason	for	a	problem	may	
involve	more	hypotheses	and	experiments	
‒ oYen	becomes	easier	with	experience	

49	

Understanding the problem
Example	1	

50	

shallow	copying	creates	"aliases"	

as	a	result,	an	assignment	to	
x[1][1]	also	changes	the	value	
of	x[0][1]	

the	problem	is	in	the	structure	
of	x,	not	in	the	values	of	i	and	j	

Understanding the problem
Example	2	

51	

the	values	assigned	to	i,j	are	
incorrect	

as	a	result,	this	assignment	
changes	the	value	of	x[0][1]	
(the	failed	assert	suggests	that	
this	was	not	intended)	

the	problem	is	in	the	values	
computed	for	i	and	j	

Understanding the problem

52	

• But	the	loca2on	and	behavior	of	the	buggy	code	
are	very	similar	in	both	cases	

• Without	understanding	the	reason	for	the	problem,	
we	can't	fix	it!	

Understanding the problem
• Without	understanding	the	reason	for	the	problem,	
we	can't	fix	it	

	

• Once	you	have	a	hypothesis	for	the	underlying	
reason	for	a	bug,	it	may	be	worth	doing	
experiments	to	confirm	it	
‒ think	of	other	observa2ons	(possibly	on	other	inputs)	
that	would	support	or	reject	your	hypothesis	

53	

The debugging process

	
1.  Locate	the	bug	
‒ Find	the	first	place	where	an	invariant	is	not	sa2sfied	

2.  Understand	the	problem	
‒ Understand	why	the	invariant	fails	to	hold	

3.  Fix	the	code	

54	

0.	 Minimize	what	you	have	to	search	through	
−	Find	the	smallest	input	and	code	that	shows	the	bug		

fixing the bug

55	

Fixing the code
• At	this	point,	you	should	have	figured	out:	
‒ the	loca2on	of	the	bug;	and	
‒ the	underlying	reason	for	the	problem	

	

•  Think	of	what	changes	to	the	code	will	remove	the	
problem,	i.e.,	fix	the	bug	

	

•  If	you	can't	figure	out	a	fix,	you	may	want	to:	
‒ dig	deeper	to	understand	the	problem	beaer	
‒ possibly	consider	different	data	structures	or	algorithms	

56	

