CSc 120 Introduction to Computer Programming II

Adapted from slides by Dr. Saumya Debray

08: Efficiency and Complexity

EFFICIENCY MATTERS

reasoning about performance

Reasoning about efficiency

- Not *just* the time taken for a program to run
 - this can depend on:
 - processor properties that have nothing to do with the program (e.g., CPU speed, amount of memory)
 - what other programs are running (*i.e., system load*)
 - which inputs we use (some inputs may be worse than others)
- We would like to compare different algorithms:
 - without requiring that we implement them both first
 - abstracting away processor-specific details
 - considering all possible inputs

Reasoning about efficiency

• Algorithms vs. programs

- Algorithm:

• a step-by-step list of instructions for solving a problem

– Program:

• an algorithm that been implemented in a given language

• We would like to compare different algorithms *abstractly*

- Search for a word my_word in a dictionary (a book)
- A dictionary is sorted
 - Algo 1:

start at the first word in the dictionary if the word is not my_word, then go to the next word continue in sequence until my_word is found

- Algo 2:

start at the middle of the dictionary

if my_word is greater than the word in the middle,

start with the middle word and continue from there to the end

if my_word is less than the word in the middle,
 start with the middle word and continue from
 there to the beginning

- Which is better, Algo 1 or Algo 2? Algo 2 in most cases (seemingly) What is the reason?
- When is Algo 1 better?

Algo 1 is better if the word is close to the beginning How close to the beginning?

 When considering which is better, what measure are we using?

The number of comparisons

- Call comparison a *primitive* operation
 - an abstract unit of computation
- We want to characterize an algorithm in terms of how many primitive operations are performed
 - best case and worst case
- We want to express this in terms of the size of the data (or size of its input)

Primitive operations

- Abstract units of computation
 - convenient for reasoning about algorithms
 - approximates typical hardware-level operations
- Includes:
 - assigning a value to a variable
 - looking up the value of a variable
 - doing a single arithmetic operation
 - comparing two numbers
 - accessing a single element of a Python list by index
 - calling a function
 - returning from a function

Primitive ops and running time

- A primitive operation typically corresponds to a small constant number of machine instructions
- No. of primitive operations executed
 ∝ no. of machine instructions executed
 ∞ actual running time
- We consider how a function's running time depends on the size of its input

- which input do we consider?

Best case vs. worst case inputs

lookup(str_, list_): returns the index where str_ occurs in list_

```
def lookup(str_, list_):
    for i in range(len(list_)):
        if str_ == list_[i]:
            return i
        return -1
```

- Best-case scenario: str_ == list_[0] # first element
 - loop does not have to iterate over list_ at all
 - running time does not depend on length of list_
 - does not reflect typical behavior of the algorithm

Best case vs. worst case inputs

lookup(str_, list_): returns the index where str_ occurs in list_

```
def lookup(str_, list_):
    for i in range(len(list_)):
        if str_ == list_[i]:
            return i
        return -1
```

- Worst-case scenario: str_ == list_[-1] # last element
 - loop iterates through list_
 - running time is proportional to the length of list_
 - captures the behavior of the algorithm better

Best case vs. worst case inputs

lookup(str_, list_): returns the index where str_ occurs in list_

```
def lookup(str_, list_):
    for i in range(len(list_)):
        if str_ == list_[i]:
            return i
        return -1
```

• In reality, we get something in between

```
- but "average-case" is difficult to characterize precisely
```

What about "average case"?

Worst-case complexity

- Considers worst-case inputs
- Describes the running time of an algorithm as a function of the size of its input ("time complexity")
- Focuses on the *rate* at which the running time grows as the input gets large
- Typically gives a better characterization of an algorithm's performance
- This approach can also be applied to the amount of memory used by an algorithm ("space complexity")

Example

Code

Primitive operations

Example

Code

Primitive operations

: total worst-case running time for a list of length n = 9n + 1

EXERCISE

What is the total worst-case running time of the following code fragment expressed in terms of n?

a = 5 b = 10for i in range(n): x = i * bfor j in range(n): z += b

asymptotic complexity

Asymptotic complexity

- In the worst-case, lookup(str_, list_) executes 9n + 1 primitive operations given a list of length n
- To translate this to running time:
 - suppose each primitive operation takes k time units
 - then worst-case running time is (9n + 1)k
- But *k* depends on specifics of the computer, e.g.:

Processor speed	k	running time
slow	20	180n + 20
medium	10	90n + 10
fast	3	27n + 3

Asymptotic complexity

- For algorithm analysis, we focus on how the running time grows as a function of the input size *n*
 - usually, we do not look at the <u>exact</u> worst case running time
 - it's enough to know proportionalities
- E.g., for the lookup() function:
 - we say only that its running time is "proportional to the input length n"

Example

Code

def list_positions(list1, list2):
 positions = []
 for value in list1:
 idx = lookup(value, list2)
 positions.append(idx)
 return positions

Example

Code

Primitive operations

Worst case behavior:

primitive operations = $n(9n + 5) + 2 = 9n^2 + 5n + 2$ running time = $k(9n^2 + 5n + 2)$

Example Code def list positions(list1, list2): positions = [] for value in list1: *Worst case*: 9n² + 5n + 2 idx = lookup(value, list2) positions.append(idx) return positions As n grows, the 9n² term grows faster than 5n+2 \Rightarrow for large n, the n² term dominates \Rightarrow running time depends primarily on n²

Example

Example 2: 2x² + 15x + 10

Example 3: x³ + 100x² + 100x + 100

Growth rates

- As input size grows, the fastest-growing term dominates the others
 - the contribution of the smaller terms becomes negligible
 - it suffices to consider only the highest degree (i.e., fastest growing) term
- For algorithm analysis purposes, the constant factors are not useful
 - they usually reflect implementation-specific features
 - to compare different algorithms, we focus only on proportionality
 - ⇒ ignore constant coefficients

Growth rate $\propto n^2$ Growth rate \propto n def list positions(list1, list2): def lookup(str_, list_): positions = [] for i in range(len(list_)): if str == list [i]: for value in list1: return i idx = lookup(value, list2) return -1 positions.append(idx) return positions

Summary so far

- Want to characterize algorithm efficiency such that:
 - does not depend on processor specifics
 - accounts for all possible inputs

⇒ count primitive operations

⇒ consider worst-case running time

- We specify the running time as a function of the size of the input
 - consider proportionality, ignore constant coefficients
 - consider only the dominant term
 - e.g., $9n^2 + 5n + 2 \approx n^2$

- Big-O is formalizes this intuitive idea:
 - consider only the dominant term

 \circ e.g., 9n² + 5n + 2 ≈ n²

allows us to say,

"the algorithm runs in time proportional to n²"

Intuition:

• Captures the idea of the growth rate of functions, focusing on proportionality and ignoring constants

Definition: Let f(n) and g(n) be functions mapping positive integers to positive real numbers.

Then, $\frac{f(n)}{f(n)}$ is O(g(n)) if there is a real constant c and an integer constant $n_0 \ge 1$ such that

 $f(n) \le cg(n)$ for all $n > n_0$

f(n) is O(g(n)) if there is a real constant c and an integer constant $n_0 \ge 1$ such that $f(n) \le c g(n)$ for all $n > n_0$

Big-O notation: properties

Some common growth-rate curves

using big-O notation

Computing big-O complexities

Given the code:

line₁ ... $O(f_1(n))$ line₂ ... $O(f_2(n))$... line_k ... $O(f_k(n))$

The overall complexity is

O(max(f₁(n), f_s(n), ..., f_k(n)))

Given the code

loop ... O(f1(n)) iterations
 line1 ... O(f2(n))

The overall complexity is

 $O(f_1(n) \times f_2(n))$

Using big-O notation

Using big-O notation

Using big-O notation

for i in range(len(list_)): if str == list [i]: return i O(n) (worst-case) O(1) (n = length of the list)

O(n)

O(n)

Computing big-O complexities

Given the code:

line₁ ... $O(f_1(n))$ line₂ ... $O(f_2(n))$... line_k ... $O(f_k(n))$

The overall complexity is

O(max(f₁(n), f_s(n), ..., f_k(n)))

Given the code

loop ... O(f1(n)) iterations
 line1 ... O(f2(n))

The overall complexity is

 $O(f_1(n) \times f_2(n))$

EXERCISE

```
# my_rfind(mylist, elt) : find the distance from the
# end of mylist where elt occurs, -1 if it does not
```

```
def my_rfind(mylist, elt):
```

```
pos = len(mylist) - 1
while pos >= 0:
    if mylist[pos] == elt:
        return pos
    pos -= 1
```

return -1

Worst-case big-O complexity = ???

EXERCISE

for each element of a list: find the biggest value # between that element and the end of the list

def find_biggest_after(arglist):

```
pos_list = []
```

```
for idx0 in range(len(arglist)):
```

```
biggest = arglist[idx0]
```

```
for idx1 in range(idx0+1, len(arglist)):
```

```
biggest = max(arglist[idx1], biggest)
```

```
pos_list.append(biggest)
```

return pos_list

Worst-case big-O complexity = ???

Input size vs. run time: max()

EXERCISE

for each element of a list: find the biggest value # between that element and the end of the list

def find_biggest_after(arglist):

```
pos_list = []
```

for idx0 in range(len(arglist)):

biggest = max(arglist[idx0:]) # library code
pos_list.append(biggest)

return pos_list

Worst-case big-O complexity = ???

WARM-UP

What is the worst case running time of the following function?

 $4n^2 + 5n + 2$

Why can we ignore the constants and lower order terms?

Is analyzing worst-case running time important?

How many Web pages are there?