
CSc 120
Introduction to Computer

 Programming II

Adapted from slides by
 Dr. Saumya Debray

08:	Efficiency	and	Complexity	

2	

EFFICIENCY	MATTERS	

reasoning about
performance

3	

Reasoning about efficiency
• Not	just	the	9me	taken	for	a	program	to	run	

‒  this	can	depend	on:	
o  	processor	proper9es	that	have	nothing	to	do	with	the	program	
(e.g.,	CPU	speed,	amount	of	memory)	

o  what	other	programs	are	running	(i.e.,	system	load)	
o  which	inputs	we	use	(some	inputs	may	be	worse	than	others)	

	

• We	would	like	to	compare	different	algorithms:	
‒ without	requiring	that	we	implement	them	both	first	
‒ abstrac9ng	away	processor-specific	details	
‒ considering	all	possible	inputs	

4	

Reasoning about efficiency
• Algorithms	vs.	programs	
	

‒ Algorithm:	
o  	a	step-by-step	list	of	instruc9ons	for	solving	a	problem	

‒  	Program:		
o  an	algorithm	that	been	implemented	in	a	given	language	

	

• We	would	like	to	compare	different	algorithms	
abstractly	

	

5	

Comparing algorithms
•  Search	for	a	word	my_word	in	a	dic9onary	(a	book)	
•  A	dic?onary	is	sorted	

‒  Algo	1:	
			start	at	the	first	word	in	the	dic9onary	
			if	the	word	is	not	my_word,	then	go	to	the	next	word	
			con9nue	in	sequence	un9l	my_word	is	found	
				
‒  	Algo	2:		
				start	at	the	middle	of	the	dic9onary	

										if	my_word	is	greater	than	the	word	in	the	middle,		
																				start	with	the		middle	word	and	con9nue	from		
																				there	to	the	end	

				if	my_word	is	less	than	the	word	in	the	middle,		
												start	with	the	middle	word	and	con9nue	from		
												there	to	the	beginning	

				

	

	
6	

Comparing algorithms
• Which	is	beTer,	Algo	1	or	Algo	2?	

	Algo	2	in	most	cases	(seemingly)	
What	is	the	reason?	

	
• When	is	Algo	1	beTer?	

Algo	1	is	beTer	if	the	word	is	close	to	the	beginning	
How	close	to	the	beginning?	
	

• When	considering	which	is	beTer,	what	measure	are	
we	using?	
The	number	of	comparisons	

	
	

	

	

7	

Comparing algorithms
• Call	comparison	a	primi?ve	opera9on	

‒ an	abstract	unit	of	computa9on	

	
• We	want	to	characterize	an	algorithm	in	terms	of	how	
many	primi9ve	opera9ons	are	performed	
‒  	best	case	and	worst	case	
	

• We	want	to	express	this	in	terms	of	the	size	of	the	data	
(or	size	of	its	input)	

	
	

	

	

8	

Primitive operations
• Abstract	units	of	computa9on		

‒ convenient	for	reasoning	about	algorithms	
‒ approximates	typical	hardware-level	opera9ons	

•  	Includes:	
‒ assigning	a	value	to	a	variable	
‒  looking	up	the	value	of	a	variable	
‒ doing	a	single	arithme9c	opera9on	
‒ comparing	two	numbers	
‒ accessing	a	single	element	of	a	Python	list	by	index	
‒ calling	a	func9on	
‒ returning	from	a	func9on	

9	

Primitive ops and running time
• A	primi9ve	opera9on	typically	corresponds	to	a	
small	constant	number	of	machine	instruc9ons	

• No.	of	primi9ve	opera9ons	executed		
										∝	no.	of	machine	instruc9ons	executed	
										∝	actual	running	9me	
	

• We	consider	how	a	func9on's	running	9me	
depends	on	the	size	of	its	input	
‒ which	input	do	we	consider?	

	

10	

Best case vs. worst case inputs

• Best-case	scenario:	str_	==	list_[0]				#	first	element	
‒  loop	does	not	have	to	iterate	over	list_	at	all	
‒ running	9me	does	not	depend	on	length	of	list_	
‒ does	not	reflect	typical	behavior	of	the	algorithm	

11	

#	lookup(str_,	list_):	returns	the	index	where	str_	occurs	in	list_		
			

def	lookup(str_,	list_):	
							for	i	in	range(len(list_)):	
													if	str_	==	list_[i]:		
																		return	i	
							return	-1	

Best case vs. worst case inputs

• Worst-case	scenario:	str_	==	list_[-1]				#	last	
element	
‒  loop	iterates	through	list_		
‒ running	9me	is	propor9onal	to	the	length	of	list_	
‒ captures	the	behavior	of	the	algorithm	beTer	

12	

#	lookup(str_,	list_):	returns	the	index	where	str_	occurs	in	list_		
			

def	lookup(str_,	list_):	
							for	i	in	range(len(list_)):	
													if	str_	==	list_[i]:		
																		return	i	
							return	-1	

Best case vs. worst case inputs

•  In	reality,	we	get	something	in	between	
‒ but	"average-case"	is	difficult	to	characterize	precisely	

13	

#	lookup(str_,	list_):	returns	the	index	where	str_	occurs	in	list_		
			

def	lookup(str_,	list_):	
							for	i	in	range(len(list_)):	
													if	str_	==	list_[i]:		
																		return	i	
							return	-1	

What about “average case”?

14	

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

A	 B	 C	 D	 E	 F	 G	 H	

Inputs	

Ru
nn

in
g	
9m

e	

best-case	
9me	

worst-case	
9me	

average	
case?	

…	

Worst-case complexity
• Considers	worst-case	inputs	
• Describes	the	running	9me	of	an	algorithm	as	a	
func9on	of	the	size	of	its	input	("9me	complexity")	

•  Focuses	on	the	rate	at	which	the	running	9me	
grows	as	the	input	gets	large	

•  Typically	gives	a	beTer	characteriza9on	of	an	
algorithm's	performance	

	

•  This	approach	can	also	be	applied	to	the	amount	of	
memory	used	by	an	algorithm	("space	complexity")	

15	

Example

16	

			

def	lookup(str_,	list_):	
							for	i	in	range(len(list_)):	
													if	str_	==	list_[i]:		
																		return	i	
							return	-1	

Code																															Primi4ve	opera4ons	

len(list_)	:	 1	

range()	:	 1	

in	:	 1	

for	:	 2	

list_[i]	:	 1	

str_	:	 1	

==	:	 1	

if	:	 1	

each	itera9on:	
9	primi9ve	ops	

Example

17	

			

def	lookup(str_,	list_):	
							for	i	in	range(len(list_)):	
													if	str_	==	list_[i]:		
																		return	i	
							return	-1	

Code																															Primi4ve	opera4ons	

len(list_)	:	 1	

range()	:	 1	

in	:	 1	

for	:	 2	

list_[i]	:	 1	

str_	:	 1	

==	:	 1	

if	:	 1	

each	itera9on:	
9	primi9ve	ops	

Total	primi?ve	ops	executed:	
								1	itera9on:	9	ops	
			∴	n	itera9ons:	9n	ops	
			+	return	at	the	end:	1	op	
	
∴	total	worst-case	running	9me	for	a	list	of	length	n	=	9n	+	1	

EXERCISE
#	What	is	the	total	worst-case	running	?me	of	the	
following	code	fragment	expressed	in	terms	of	n?	
						a	=	5	
						b	=	10	
						for	i	in	range(n):	
												x	=	i	*	b	
						for	j	in	range(n):	
													z	+=	b	

18	

asymptotic complexity

19	

Asymptotic complexity
•  In	the	worst-case,	lookup(str_,	list_)	executes	9n	+	1	
primi9ve	opera9ons	given	a	list	of	length	n	

•  	To	translate	this	to	running	9me:		
‒ suppose	each	primi9ve	opera9on	takes	k	9me	units	
‒  then	worst-case	running	9me	is	(9n	+	1)k		

• But	k	depends	on	specifics	of	the	computer,	e.g.:	

20	

Processor	speed	 k	 running	4me	

slow	 20	 180n	+	20	

medium	 10	 90n	+	10	

fast	 3	 27n	+	3	

Asymptotic complexity

21	

depends	on	processor-
specific	characteris9cs	

depends	on	how	the	
algorithm	processes	data	

worst	case	running	9me	=	An	+	B	

Asymptotic complexity
•  For	algorithm	analysis,	we	focus	on	how	the	
running	9me	grows	as	a	func9on	of	the	input	size	n	
‒ usually,	we	do	not	look	at	the	exact	worst	case	running	
9me		

‒  it's	enough	to	know	propor9onali9es	
	

•  E.g.,	for	the	lookup()	func9on:	
‒ we	say	only	that	its	running	9me	is	"propor?onal	to	the	
input	length	n"	
	

22	

Example

def	list_posi9ons(list1,	list2):	
				posi9ons	=	[]	
				for	value	in	list1:	
								idx	=	lookup(value,	list2)	
								posi9ons.append(idx)	
				return	posi9ons	

23	

Code																																					Primi4ve	opera4ons	

Example

def	list_posi9ons(list1,	list2):	
				posi9ons	=	[]	
				for	value	in	list1:	
								idx	=	lookup(value,	list2)	
								posi9ons.append(idx)	
				return	posi9ons	

24	

in	:	 1	

for	:	 2	

1	

Code																																					Primi4ve	opera4ons	

9n	+	1	

1	

1	

iterates	
n	9mes	

Worst	case	behavior:	
	primi9ve	opera9ons		=	n(9n	+	5)	+	2	=	9n2	+	5n	+	2	
	running	9me	=		k(9n2	+	5n	+	2)	

Example

def	list_posi9ons(list1,	list2):	
						posi9ons	=	[]	
				for	value	in	list1:	
								idx	=	lookup(value,	list2)	
								posi9ons.append(idx)	
				return	posi9ons	

25	

Code																																					Primi4ve	opera4ons	

Worst	case:	9n2	+	5n	+	2		

As	n	grows,	the	9n2	term	grows	faster	than	5n+2	
⇒	for	large	n,	the	n2	term	dominates	
⇒	running	9me	depends	primarily	on	n2	

Example

26	

9n2	
9n2	+	5n	+	2	

9n2	
9n2	+	5n	+	2	

9n2	
9n2	+	5n	+	2	

As	n	grows	larger,	the	n2	term	dominates	
⇒ 	the	contribu9on	of	the	other	terms	
becomes	insignificant	

Example 2: 2x2 + 15x + 10

27	

2x2	+	15x	+	10	

2x2	

2x2	+	15x	+	10	

2x2	

2x2	+	15x	+	10	
2x2	

Example 3: x3 + 100x2 + 100x +
100

28	

x3	+	100x2	+	100x	+	100	

x3	

x3	+	100x2	+	100x	+	100	

x3	x3	+	100x2	+	100x	+	100	
x3	

x3	+	100x2	+	100x	+	100	
x3	

Growth rates
• As	input	size	grows,	the	fastest-growing	term	
dominates	the	others	
‒  the	contribu9on	of	the	smaller	terms	becomes	negligible	
‒  it	suffices	to	consider	only	the	highest	degree	(i.e.,	fastest	
growing)	term		

	

•  For	algorithm	analysis	purposes,	the	constant	factors	
are	not	useful	
‒  they	usually	reflect	implementa9on-specific	features	
‒  to	compare	different	algorithms,	we	focus	only	on	
propor9onality		

⇒ 	ignore	constant	coefficients	

29	

Comparing algorithms

Growth	rate	∝	n	 Growth	rate	∝	n2	

30	

			

def	lookup(str_,	list_):	
							for	i	in	range(len(list_)):	
													if	str_	==	list_[i]:		
																		return	i	
							return	-1	

def	list_posi9ons(list1,	list2):	
				posi9ons	=	[]	
				for	value	in	list1:	
								idx	=	lookup(value,	list2)	
								posi9ons.append(idx)	
				return	posi9ons	

Summary so far
• Want	to	characterize	algorithm	efficiency	such	that:	

‒  	does	not	depend	on	processor	specifics	
‒ accounts	for	all	possible	inputs	
	

⇒ 	count	primi9ve	opera9ons	
⇒ 	consider	worst-case	running	9me	
	

• We	specify	the	running	9me	as	a	func9on	of	the	
size	of	the	input	
‒ consider	propor9onality,	ignore	constant	coefficients	
‒ consider	only	the	dominant	term		

o  e.g.,	9n2	+	5n	+	2		≈		n2	

31	

big-O notation

32	

Big-O notation
	

• Big-O	is	formalizes	this	intui9ve	idea:	
‒ consider	only	the	dominant	term		

o  e.g.,	9n2	+	5n	+	2		≈		n2	

‒ allows	us	to	say,	
						"the	algorithm	runs	in	9me	propor9onal	to	n2"	

	

33	

Big-O notation

Intui9on:	
	

34	

When	we	say…	 …we	mean	
"f(n)	is	O(g(n))"				 "f	is	growing	at	most	as	fast	as	g"	

"big-O	nota9on"	

Defini4on:	Let	f(n)	and	g(n)	be	func9ons	mapping	
posi9ve	integers	to	posi9ve	real	numbers.		
	

Then,		f(n)	is	O(g(n))		if	there	is	a	real	constant	c	and	
an	integer	constant	n0	≥	1	such	that	
	

f(n)	≤	c	g(n)					for	all	n	>	n0	

Big-O notation
• Captures	the	idea	of	the	growth	rate	of	func9ons,	
focusing	on	propor9onality	and	ignoring	constants		

35	

Big-O notation

36	

f(n)	is	O(g(n))		if	there	is	a	real	constant	c	and	an	integer	
constant	n0	≥	1	such	that		f(n)	≤	c	g(n)					for	all	n	>	n0	

“Once	the	input	gets	big	enough,	
c	g(n) is	(always)	larger	than	f(n) ”	

Big-O notation: properties
•  If	g(n)	is	growing	faster	
than	f(n):	
‒  f(n)	is	O(g(n))	
‒ g(n)	is	not	O(f(n))	

•  If	f(n)	=	a0	+	a1n	+	...	+	aknk,	
then:	
									f(n)	=	O(nk)	
	

‒  i.e.,	coefficients	and	lower-
order	terms	can	be	ignored	

37	

g(n)	

f(n)	

Some common growth-rate curves

38	

O(log	n)	

O(n)	

O(n	log(n))	

O(n2)	

O(n3)	

using big-O notation

39	

Computing big-O complexities
Given	the	code:	
	

line1					...	O(f1(n))	
line2					...	O(f2(n))	
...	
linek					...	O(fk(n))	

	
The	overall	complexity	is		
	

O(max(f1(n),	fs(n),	...,	fk(n)))	
	

Given	the	code	
	
loop		...	O(f1(n))	itera9ons	
						line1				...	O(f2(n))	
	
	

The	overall	complexity	is	
	

O(f1(n)	x	f2(n))	
	

40	

Using big-O notation

Code	

					str_	==	list_[i]	

Big-O	complexity	

O(1)	

41	

O(1)	O(1)	

O(1)	

Using big-O notation

Code	

					if	str_	==	list_[i]:		
										return	i	
	

Big-O	complexity	

O(1)	

42	

O(1)	

O(1)	

O(1)	

Using big-O notation

Code	

						

Big-O	complexity	

O(n)	

43	

			

	
	
for	i	in	range(len(list_)):	
													if	str_	==	list_[i]:		
																		return	i	

O(1)	O(n)			(worst-case)	
(n	=	length	of	the	list)	

Using big-O notation

Code	

						

Big-O	complexity	

O(n)	

44	

			

def	lookup(str_,	list_):	
							for	i	in	range(len(list_)):	
													if	str_	==	list_[i]:		
																		return	i	
							return	-1	

O(n)	
O(1)	

Using big-O notation

Code	 Big-O	complexity	

O(n2)	

45	

def	list_posi9ons(list1,	list2):	
						posi9ons	=	[]	
						for	value	in	list1:	
										idx	=	lookup(value,	list2)	
										posi9ons.append(idx)	
						return	posi9ons	 O(n)			(worst-case)	

(n	=	length	of	list2)	

O(n)			(worst-case)	
(n	=	length	of	list1)	

Using big-O notation

Code	 Big-O	complexity	

O(n2)	

46	

def	list_posi9ons(list1,	list2):	
						posi9ons	=	[]	
						for	value	in	list1:	
										idx	=	lookup(value,	list2)	
										posi9ons.append(idx)	
						return	posi9ons	

O(n2)	

O(1)	

Computing big-O complexities
Given	the	code:	
	

line1					...	O(f1(n))	
line2					...	O(f2(n))	
...	
linek					...	O(fk(n))	

	
The	overall	complexity	is		
	

O(max(f1(n),	fs(n),	...,	fk(n)))	
	

Given	the	code	
	
loop		...	O(f1(n))	itera9ons	
						line1				...	O(f2(n))	
	
	

The	overall	complexity	is	
	

O(f1(n)	x	f2(n))	
	

47	

EXERCISE
#	my_rfind(mylist,	elt)	:	find	the	distance	from	the						
#	end	of	mylist	where	elt	occurs,	-1	if	it	does	not	
def	my_rfind(mylist,	elt):	
						pos	=	len(mylist)	‒	1	
						while	pos	>=	0:	
													if	mylist[pos]	==	elt:	
																			return	pos	
													pos	-=	1	
						return	-1	

48	

Worst-case	big-O	complexity	=	???	

EXERCISE
#	for	each	element	of	a	list:	find	the	biggest	value						
#	between	that	element	and	the	end	of	the	list	
def	find_biggest_aqer(arglist):		
						pos_list	=	[]	
						for	idx0	in	range(len(arglist)):	
											biggest	=	arglist[idx0]	
											for	idx1	in	range(idx0+1,	len(arglist)):	
																biggest	=	max(arglist[idx1],	biggest)	
											pos_list.append(biggest)	
						return	pos_list		

49	

Worst-case	big-O	complexity	=	???	

Input size vs. run time: max()

50	

0	

20	

40	

60	

80	

100	

120	

140	

160	

0	 2000000	 4000000	 6000000	 8000000	 10000000	

Ru
n9

m
e	
(m

s)
	

Input	size	

EXERCISE
#	for	each	element	of	a	list:	find	the	biggest	value						
#	between	that	element	and	the	end	of	the	list	
def	find_biggest_aqer(arglist):		
						pos_list	=	[]	
						for	idx0	in	range(len(arglist)):	
											biggest	=	max(arglist[idx0:])			#	library	code	
											pos_list.append(biggest)	
						return	pos_list		

51	

Worst-case	big-O	complexity	=	???	

WARM-UP
What	is	the	worst	case	running	9me	of	the	following	
func9on?	
														4n2	+	5n	+	2	

	
Why	can	we	ignore	the	constants	and	lower	order	
terms?	
	
Is	analyzing	worst-case	running	9me	important?	
	
How	many	Web	pages	are	there?	
	 52	

