CSc 120
Introduction to Computer Programming II

Adapted from slides by Dr. Saumya Debray

08: Efficiency and Complexity
EFFICIENCY MATTERS
reasoning about performance
Reasoning about efficiency

• Not *just* the time taken for a program to run
 – this can depend on:
 o processor properties that have nothing to do with the program *(e.g., CPU speed, amount of memory)*
 o what other programs are running *(i.e., system load)*
 o which inputs we use *(some inputs may be worse than others)*

• We would like to compare different algorithms:
 – without requiring that we implement them both first
 – abstracting away processor-specific details
 – considering all possible inputs
Reasoning about efficiency

• Algorithms vs. programs

 – Algorithm:
 o a step-by-step list of instructions for solving a problem

 – Program:
 o an algorithm that has been implemented in a given language

• We would like to compare different algorithms abstractly
Comparing algorithms

• Search for a word \textit{my_word} in a dictionary (a book)
• A dictionary is sorted
 – Algo 1:
 start at the first word in the dictionary
 if the word is not \textit{my_word}, then go to the next word
 continue in sequence until \textit{my_word} is found
 – Algo 2:
 start at the middle of the dictionary
 if \textit{my_word} is greater than the word in the middle,
 start with the middle word and continue from there to the end
 if \textit{my_word} is less than the word in the middle,
 start with the middle word and continue from there to the beginning
Comparing algorithms

• Which is better, Algo 1 or Algo 2?
 Algo 2 in most cases (seemingly)
 What is the reason?

• When is Algo 1 better?
 Algo 1 is better if the word is close to the beginning
 How close to the beginning?

• When considering which is better, what measure are we using?
 The number of comparisons
Comparing algorithms

• Call comparison a *primitive* operation
 – an abstract unit of computation

• We want to characterize an algorithm in terms of how many primitive operations are performed
 – best case and worst case

• We want to express this in terms of the size of the data (or size of its input)
Primitive operations

• Abstract units of computation
 – convenient for reasoning about algorithms
 – approximates typical hardware-level operations

• Includes:
 – assigning a value to a variable
 – looking up the value of a variable
 – doing a single arithmetic operation
 – comparing two numbers
 – accessing a single element of a Python list by index
 – calling a function
 – returning from a function
Primitive ops and running time

• A primitive operation typically corresponds to a small constant number of machine instructions
• No. of primitive operations executed
 \propto no. of machine instructions executed
 \propto actual running time

• We consider how a function's running time depends on the size of its input
 – which input do we consider?
Best case vs. worst case inputs

lookup(str_, list_): returns the index where str_ occurs in list_

def lookup(str_, list_):
 for i in range(len(list_)):
 if str_ == list_[i]:
 return i
 return -1

• **Best-case scenario:** str_ == list_[0] # first element
 – loop does not have to iterate over list_ at all
 – running time does not depend on length of list_
 – does not reflect typical behavior of the algorithm
Best case vs. worst case inputs

lookup(str_, list_): returns the index where str_ occurs in list_

def lookup(str_, list_):
 for i in range(len(list_)):
 if str_ == list_[i]:
 return i
 return -1

• Worst-case scenario: str_ == list_[-1] # last element
 – loop iterates through list_
 – running time is proportional to the length of list_
 – captures the behavior of the algorithm better
Best case vs. worst case inputs

lookup(str_, list_): returns the index where str_ occurs in list_

def lookup(str_, list_):
 for i in range(len(list_)):
 if str_ == list_[i]:
 return i
 return -1

• In reality, we get something in between
 – but "average-case" is difficult to characterize precisely
What about “average case”?
Worst-case complexity

• Considers worst-case inputs
• Describes the running time of an algorithm as a function of the size of its input ("time complexity")
• Focuses on the rate at which the running time grows as the input gets large
• Typically gives a better characterization of an algorithm's performance

• This approach can also be applied to the amount of memory used by an algorithm ("space complexity")
Example

def lookup(str_, list_):
 for i in range(len(list_)):
 if str_ == list_[i]:
 return i
 return -1

Code

Primitive operations

- len(list_) : 1
- range() : 1
- in : 1
- for : 2
- list_[i] : 1
- str_ : 1
- == : 1
- if : 1

each iteration: 9 primitive ops
Example

Code

```python
def lookup(str_, list_):
    for i in range(len(list_)):
        if str_ == list_[i]:
            return i
    return -1
```

Primitive operations

```
len(list_) : 1
range( ) : 1
in : 1
for : 2
list_[i] : 1
str_ : 1
== : 1
if : 1
```

Total primitive ops executed:

- 1 iteration: 9 ops
- \(n \) iterations: \(9n \) ops
- + return at the end: 1 op

\[\therefore \text{total worst-case running time for a list of length } n = 9n + 1 \]
EXERCISE

What is the total worst-case running time of the following code fragment expressed in terms of n?

```python
a = 5
b = 10
for i in range(n):
    x = i * b
for j in range(n):
    z += b
```
asymptotic complexity
Asymptotic complexity

• In the worst-case, lookup(str_, list_) executes $9n + 1$ primitive operations given a list of length n

• To translate this to running time:
 ‒ suppose each primitive operation takes k time units
 ‒ then worst-case running time is $(9n + 1)k$

• But k depends on specifics of the computer, e.g.:

<table>
<thead>
<tr>
<th>Processor speed</th>
<th>k</th>
<th>running time</th>
</tr>
</thead>
<tbody>
<tr>
<td>slow</td>
<td>20</td>
<td>$180n + 20$</td>
</tr>
<tr>
<td>medium</td>
<td>10</td>
<td>$90n + 10$</td>
</tr>
<tr>
<td>fast</td>
<td>3</td>
<td>$27n + 3$</td>
</tr>
</tbody>
</table>
Asymptotic complexity

worst case running time = \(A \cdot n + B \)

depends on how the algorithm processes data

depends on processor-specific characteristics
Asymptotic complexity

• For algorithm analysis, we focus on how the running time grows as a function of the input size n
 – usually, we do not look at the exact worst case running time
 – it's enough to know proportionalities

• E.g., for the lookup() function:
 – we say only that its running time is "proportional to the input length $n"
Example

Code

def list_positions(list1, list2):
 positions = []
 for value in list1:
 idx = lookup(value, list2)
 positions.append(idx)
 return positions
Example

Code

```python
def list_positions(list1, list2):
    positions = []
    for value in list1:
        idx = lookup(value, list2)
        positions.append(idx)
    return positions
```

Primitive operations

<table>
<thead>
<tr>
<th>Operation</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>positions = []</code></td>
<td>1</td>
</tr>
<tr>
<td><code>for value in list1:</code></td>
<td>2</td>
</tr>
<tr>
<td><code>idx = lookup(value, list2)</code></td>
<td>9n + 1</td>
</tr>
<tr>
<td><code>positions.append(idx)</code></td>
<td>1</td>
</tr>
<tr>
<td><code>return positions</code></td>
<td>1</td>
</tr>
</tbody>
</table>

Worst case behavior:

- Primitive operations: \(n(9n + 5) + 2 = 9n^2 + 5n + 2\)
- Running time: \(k(9n^2 + 5n + 2)\)
def list_positions(list1, list2):
 positions = []
 for value in list1:
 idx = lookup(value, list2)
 positions.append(idx)
 return positions

Worst case: $9n^2 + 5n + 2$

As n grows, the $9n^2$ term grows faster than $5n+2$
⇒ for large n, the n^2 term dominates
⇒ running time depends primarily on n^2
Example

As \(n \) grows larger, the \(n^2 \) term dominates \(\Rightarrow \) the contribution of the other terms becomes insignificant.
Example 2: $2x^2 + 15x + 10$
Example 3: \(x^3 + 100x^2 + 100x + 100 \)
Growth rates

• As input size grows, the fastest-growing term dominates the others
 – the contribution of the smaller terms becomes negligible
 – it suffices to consider only the highest degree (i.e., fastest growing) term

• For algorithm analysis purposes, the constant factors are not useful
 – they usually reflect implementation-specific features
 – to compare different algorithms, we focus only on proportionality
 ⇒ ignore constant coefficients
Comparing algorithms

Growth rate $\propto n$

```python
def lookup(str_, list_):
    for i in range(len(list_)):
        if str_ == list_[i]:
            return i
    return -1
```

Growth rate $\propto n^2$

```python
def list_positions(list1, list2):
    positions = []
    for value in list1:
        idx = lookup(value, list2)
        positions.append(idx)
    return positions
```
Summary so far

• Want to characterize algorithm efficiency such that:
 – does not depend on processor specifics
 – accounts for all possible inputs

 ⇒ count primitive operations
 ⇒ consider worst-case running time

• We specify the running time as a function of the size of the input
 – consider proportionality, ignore constant coefficients
 – consider only the dominant term
 o e.g., $9n^2 + 5n + 2 \approx n^2$
big-O notation
Big-O notation

• Big-O is formalizes this intuitive idea:
 – consider only the dominant term
 o e.g., $9n^2 + 5n + 2 \approx n^2$
 – allows us to say,
 "the algorithm runs in time proportional to n^2"
Big-O notation

Intuition:

When we say... we mean

"f(n) is O(g(n))" "f is growing at most as fast as g"

"big-O notation"
Big-O notation

- Captures the idea of the growth rate of functions, focusing on proportionality and ignoring constants

Definition: Let $f(n)$ and $g(n)$ be functions mapping positive integers to positive real numbers.

Then, $f(n)$ is $O(g(n))$ if there is a real constant c and an integer constant $n_0 \geq 1$ such that

$$f(n) \leq cg(n) \quad \text{for all } n > n_0$$
Big-O notation

$f(n)$ is $\Theta(g(n))$ if there is a real constant c and an integer constant $n_0 \geq 1$ such that $f(n) \leq cg(n)$ for all $n > n_0$.

"Once the input gets big enough, $cg(n)$ is (always) larger than $f(n)$"
Big-O notation: properties

• If $g(n)$ is growing faster than $f(n)$:
 - $f(n)$ is $O(g(n))$
 - $g(n)$ is not $O(f(n))$

• If $f(n) = a_0 + a_1 n + ... + a_k n^k$, then:

 \[f(n) = O(n^k) \]

 - i.e., coefficients and lower-order terms can be ignored
Some common growth-rate curves

![Graph showing growth rates with O(log n), O(n), O(n log(n)), O(n^2), and O(n^3) curves.](image)
using big-O notation
Computing big-O complexities

Given the code:

\[
\begin{align*}
\text{line}_1 & \quad \ldots \quad O(f_1(n)) \\
\text{line}_2 & \quad \ldots \quad O(f_2(n)) \\
\quad & \ldots \\
\text{line}_k & \quad \ldots \quad O(f_k(n)) \\
\end{align*}
\]

The overall complexity is

\[O(\max(f_1(n), f_2(n), \ldots, f_k(n)))\]

Given the code

\[
\begin{align*}
\text{loop} & \quad \ldots \quad O(f_1(n)) \text{ iterations} \\
\text{line}_1 & \quad \ldots \quad O(f_2(n)) \\
\end{align*}
\]

The overall complexity is

\[O(f_1(n) \times f_2(n))\]
Using big-O notation

<table>
<thead>
<tr>
<th>Code</th>
<th>Big-O complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>str[i] == list[i]</code></td>
<td>O(1)</td>
</tr>
</tbody>
</table>

O(1)
Using big-O notation

if str_ == list_[i]:
 return i

O(1)
Using big-O notation

<table>
<thead>
<tr>
<th>Code</th>
<th>Big-O complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>for i in range(len(list_)): if str_ == list_[i]: return i</code></td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>

$O(n)$ (worst-case)
$n = \text{length of the list}$

$O(1)$
Using big-O notation

<table>
<thead>
<tr>
<th>Code</th>
<th>Big-O complexity</th>
</tr>
</thead>
</table>
| ```python
def lookup(str_, list_):
 for i in range(len(list_)):
 if str_ == list_[i]:
 return i
 return -1
``` | O(n) |

- **O(1)**: `for` loop and comparison.
- **O(n)**: `range(len(list_))` and comparison.
Using big-O notation

```
def list_positions(list1, list2):
 positions = []
 for value in list1:
 idx = lookup(value, list2)
 positions.append(idx)
 return positions
```

**Big-O complexity**

- $O(n^2)$
  - (worst-case)
  - $n = \text{length of list2}$

For value in list1:

- $O(n)$ (worst-case)
  - $n = \text{length of list1}$

- $O(n)$ (worst-case)
  - $n = \text{length of list2}$
Using big-O notation

def list_positions(list1, list2):
    positions = []
    for value in list1:
        idx = lookup(value, list2)
        positions.append(idx)
    return positions

O(1)

O(n^2)

O(n^2)
Computing big-O complexities

Given the code:

\[
\begin{align*}
\text{line}_1 & \quad \ldots \quad O(f_1(n)) \\
\text{line}_2 & \quad \ldots \quad O(f_2(n)) \\
\vdots & \\
\text{line}_k & \quad \ldots \quad O(f_k(n))
\end{align*}
\]

The overall complexity is

\[O(\max(f_1(n), f_2(n), \ldots, f_k(n)))\]

Given the code

loop \quad \ldots \quad O(f_1(n)) \text{ iterations} \\
\begin{align*}
\text{line}_1 & \quad \ldots \quad O(f_2(n)) \\
\end{align*}

The overall complexity is

\[O( f_1(n) \times f_2(n) ) \]
EXERCISE

# my_rfind(mylist, elt) : find the distance from the # end of mylist where elt occurs, -1 if it does not

def my_rfind(mylist, elt):
    pos = len(mylist) - 1
    while pos >= 0:
        if mylist[pos] == elt:
            return pos
        pos -= 1
    return -1

Worst-case big-O complexity = ???
EXERCISE

# for each element of a list: find the biggest value
# between that element and the end of the list

def find_biggest_after(arglist):
    pos_list = []
    for idx0 in range(len(arglist)):
        biggest = arglist[idx0]
        for idx1 in range(idx0+1, len(arglist)):
            biggest = max(arglist[idx1], biggest)
        pos_list.append(biggest)
    return pos_list

Worst-case big-O complexity = ???
Input size vs. run time: max()
EXERCISE

# for each element of a list: find the biggest value
# between that element and the end of the list

def find_biggest_after(arglist):
    pos_list = []
    for idx0 in range(len(arglist)):
        biggest = max(arglist[idx0:])  # library code
        pos_list.append(biggest)
    return pos_list

Worst-case big-O complexity = ???
WARM-UP

What is the worst case running time of the following function?

\[4n^2 + 5n + 2\]

Why can we ignore the constants and lower order terms?

Is analyzing worst-case running time important?

How many Web pages are there?