CSc 120 Introduction to Computer Programming II

Adapted from slides by
Dr. Saumya Debray
08: Efficiency and Complexity

EFFICIENCY MATTERS

reasoning about performance

Reasoning about efficiency

- Not just the time taken for a program to run
- this can depend on:
- processor properties that have nothing to do with the program (e.g., CPU speed, amount of memory)
- what other programs are running (i.e., system load)
- which inputs we use (some inputs may be worse than others)
- We would like to compare different algorithms:
- without requiring that we implement them both first
- abstracting away processor-specific details
- considering all possible inputs

Reasoning about efficiency

- Algorithms vs. programs
- Algorithm:
- a step-by-step list of instructions for solving a problem
- Program:
- an algorithm that been implemented in a given language
- We would like to compare different algorithms abstractly

Comparing algorithms

- Search for a word my_word in a dictionary (a book)
- A dictionary is sorted
- Algo 1:
start at the first word in the dictionary
if the word is not my_word, then go to the next word continue in sequence until my_word is found
- Algo 2:
start at the middle of the dictionary
if my_word is greater than the word in the middle, start with the middle word and continue from there to the end
if my _word is less than the word in the middle, start with the middle word and continue from there to the beginning

Comparing algorithms

- Which is better, Algo 1 or Algo 2?

Algo 2 in most cases (seemingly)
What is the reason?

- When is Algo 1 better?

Algo 1 is better if the word is close to the beginning How close to the beginning?

- When considering which is better, what measure are we using?
The number of comparisons

Comparing algorithms

- Call comparison a primitive operation
- an abstract unit of computation
- We want to characterize an algorithm in terms of how many primitive operations are performed
- best case and worst case
- We want to express this in terms of the size of the data (or size of its input)

Primitive operations

- Abstract units of computation
- convenient for reasoning about algorithms
- approximates typical hardware-level operations
- Includes:
- assigning a value to a variable
- looking up the value of a variable
- doing a single arithmetic operation
- comparing two numbers
- accessing a single element of a Python list by index
- calling a function
- returning from a function

Primitive ops and running time

- A primitive operation typically corresponds to a small constant number of machine instructions
- No. of primitive operations executed
\propto no. of machine instructions executed \propto actual running time
- We consider how a function's running time depends on the size of its input
- which input do we consider?

Best case vs. worst case inputs

\# lookup(str_, list_): returns the index where str_ occurs in list_ def lookup(str_, list_):
for i in range(len(list_)): if str_ $_{-}==$list_[i]: return i
return -1

- Best-case scenario: str_ == list_[0] \# first element
- loop does not have to iterate over list_ at all
- running time does not depend on length of list_
- does not reflect typical behavior of the algorithm

Best case vs. worst case inputs

\# lookup(str_, list_): returns the index where str_ occurs in list_ def lookup(str_, list_):
for i in range(len(list_)): if str_ $_{-}==$list_[i]: return i
return -1

- Worst-case scenario: str_ == list_[-1] \# last element
- loop iterates through list
- running time is proportional to the length of list_
- captures the behavior of the algorithm better

Best case vs. worst case inputs

\# lookup(str_, list_): returns the index where str_ occurs in list_ def lookup(str_, list_):
for i in range(len(list_)): if str_ $_{-}=$list_[i]: return i
return -1

- In reality, we get something in between
- but "average-case" is difficult to characterize precisely

What about "average case"?

Worst-case complexity

- Considers worst-case inputs
- Describes the running time of an algorithm as a function of the size of its input ("time complexity")
- Focuses on the rate at which the running time grows as the input gets large
- Typically gives a better characterization of an algorithm's performance
- This approach can also be applied to the amount of memory used by an algorithm ("space complexity")

Example

Code

Primitive operations

Example

Code

Primitive operations

\therefore total worst-case running time for a list of length $n=9 n+1$

EXERCISE

\# What is the total worst-case running time of the following code fragment expressed in terms of n ?

$$
\begin{aligned}
& a=5 \\
& b=10
\end{aligned}
$$

for i in range(n):

$$
x=i * b
$$

for j in range(n):

$$
z+=b
$$

asymptotic complexity

Asymptotic complexity

- In the worst-case, lookup(str_, list_) executes 9n + 1 primitive operations given a list of length n
- To translate this to running time:
- suppose each primitive operation takes k time units
- then worst-case running time is $(9 n+1) k$
- But k depends on specifics of the computer, e.g.:

Processor speed	\boldsymbol{k}	running time
slow	20	$180 \mathrm{n}+20$
medium	10	$90 \mathrm{n}+10$
fast	3	$27 \mathrm{n}+3$

Asymptotic complexity

depends on processorspecific characteristics
depends on how the
algorithm processes data

Asymptotic complexity

- For algorithm analysis, we focus on how the running time grows as a function of the input size n
- usually, we do not look at the exact worst case running time
- it's enough to know proportionalities
- E.g., for the lookup() function:
- we say only that its running time is "proportional to the input length n"

Example

Code

def list_positions(list1, list2):
positions = []
for value in list1:
idx = lookup(value, list2) positions.append(idx)
return positions

Example

Code

Primitive operations

def list_positions(list1, list2):
positions = []
for value in list1:
$= \begin{cases}\text { in: } & 1 \\ \text { for: } & 2\end{cases}$ $\left.\begin{array}{l}\mathrm{idx}=\text { lookup(value, list2) } \longrightarrow 9 n+1 \\ \text { positions.append(idx) } \\ 1\end{array}\right\} \begin{gathered}\text { iterates } \\ n \text { n times }\end{gathered}$
return positions1

Worst case behavior:
primitive operations $=n(9 n+5)+2=9 n^{2}+5 n+2$ running time $=k\left(9 n^{2}+5 n+2\right)$

Example

Code
def list_positions(list1, list2):
positions = []
for value in list1:
idx = lookup(value, list2) positions.append(idx)
return positions

As n grows, the $9 n^{2}$ term grows faster than $5 n+2$
\Rightarrow for large n, the n^{2} term dominates
\Rightarrow running time depends primarily on n^{2}

Example

As n grows larger, the n^{2} term dominates
\Rightarrow the contribution of the other terms becomes insignificant

Example 2: $2 x^{2}+15 x+10$

Example 3: $x^{3}+100 x^{2}+100 x+$ 100

Growth rates

- As input size grows, the fastest-growing term dominates the others
- the contribution of the smaller terms becomes negligible
- it suffices to consider only the highest degree (i.e., fastest growing) term
- For algorithm analysis purposes, the constant factors are not useful
- they usually reflect implementation-specific features
- to compare different algorithms, we focus only on proportionality
\Rightarrow ignore constant coefficients

Comparing algorithms

Growth rate $\propto \mathbf{n}$
def lookup(str_, list_): for i in range(len(list_)): if str_ == list_[i]: return i
return -1

Growth rate $\propto \mathbf{n}^{\mathbf{2}}$
def list_positions(list1, list2): positions = [] for value in list1: idx = lookup(value, list2) positions.append(idx)
return positions

Summary so far

- Want to characterize algorithm efficiency such that:
- does not depend on processor specifics
- accounts for all possible inputs
\Rightarrow count primitive operations
\Rightarrow consider worst-case running time
- We specify the running time as a function of the size of the input
- consider proportionality, ignore constant coefficients
- consider only the dominant term
- e.g., $9 n^{2}+5 n+2 \approx n^{2}$

big-O notation

Big-O notation

- Big-O is formalizes this intuitive idea:
- consider only the dominant term
- e.g., $9 n^{2}+5 n+2 \approx n^{2}$
- allows us to say,
"the algorithm runs in time proportional to $\mathrm{n}^{2 "}$

Big-O notation

Intuition:

When we say... ... we mean
" $\mathrm{f}(\mathrm{n})$ is $\mathrm{O}(\mathrm{g}(\mathrm{n}))$ " " f is growing at most as fast as $\mathrm{g} "$
"big-O notation"

Big-O notation

- Captures the idea of the growth rate of functions, focusing on proportionality and ignoring constants

Definition: Let $f(n)$ and $g(n)$ be functions mapping positive integers to positive real numbers.

Then, $f(n)$ is $\mathrm{O}(g(n))$ if there is a real constant c and an integer constant $n_{0} \geq 1$ such that

$$
f(n) \leq c g(n) \quad \text { for all } n>n_{0}
$$

Big-O notation

$f(n)$ is $\mathrm{O}(g(n))$ if there is a real constant c and an integer constant $n_{0} \geq 1$ such that $f(n) \leq \mathrm{c} g(n)$ for all $n>n_{0}$

Big-O notation: properties

- If $\mathrm{g}(\mathrm{n})$ is growing faster than $f(n)$:
$-\mathrm{f}(\mathrm{n})$ is $\mathrm{O}(\mathrm{g}(\mathrm{n}))$
$-\mathrm{g}(\mathrm{n})$ is not $\mathrm{O}(\mathrm{f}(\mathrm{n})$)
- If $\mathrm{f}(n)=a_{0}+a_{1} n+\ldots+a_{k} n^{k}$, then:

$$
f(n)=O\left(n^{k}\right)
$$

- i.e., coefficients and lowerorder terms can be ignored

Some common growth-rate curves

Input size

using big-O notation

Computing big-O complexities

Given the code:

$$
\begin{array}{ll}
\operatorname{line}_{1} & \ldots O\left(f_{1}(n)\right) \\
\text { line }_{2} & \ldots O\left(f_{2}(n)\right)
\end{array}
$$

$\operatorname{line}_{k} \quad \ldots \mathrm{O}\left(\mathrm{f}_{k}(\mathrm{n})\right)$

The overall complexity is
$O\left(\max \left(f_{1}(n), f_{s}(n), \ldots, f_{k}(n)\right)\right)$

Given the code
loop ... O(f1(n)) iterations line1 ... O(f2(n))

The overall complexity is
$O\left(f_{1}(n) \times f_{2}(n)\right)$

Using big-O notation

Code

Big-O complexity

O(1)

Using big-O notation

Code

Big-O complexity

O(1)

Using big-O notation

Code

Big-O complexity
for i in range(len(list_)):
O(n)

Using big-O notation

Code

Big-O complexity
def lookup(str_, list_):
for i in range(len(list
if str_== list_[i]: return i
return -1
$\mathrm{O}(\mathrm{n})$
O(1)

Using big-O notation

Code

Big-O complexity

$O\left(n^{2}\right)$

Using big-O notation

Code

Big-O complexity

def list_positions(list1, list2):

Computing big-O complexities

Given the code:

$$
\begin{array}{ll}
\operatorname{line}_{1} & \ldots O\left(f_{1}(n)\right) \\
\text { line }_{2} & \ldots O\left(f_{2}(n)\right)
\end{array}
$$

$\operatorname{line}_{k} \quad \ldots \mathrm{O}\left(\mathrm{f}_{k}(\mathrm{n})\right)$

The overall complexity is
$O\left(\max \left(f_{1}(n), f_{s}(n), \ldots, f_{k}(n)\right)\right)$

Given the code
loop ... O(f1(n)) iterations line1 ... O(f2(n))

The overall complexity is
$O\left(f_{1}(n) \times f_{2}(n)\right)$

EXERCISE

\# my_rfind(mylist, elt) : find the distance from the \# end of mylist where elt occurs, -1 if it does not def my_rfind(mylist, elt):
pos $=\operatorname{len}(m y l i s t)-1$
while pos >= 0 : if mylist[pos] == elt:
return pos

$$
\text { pos -= } 1
$$

return -1
Worst-case big-O complexity = ???

EXERCISE

\# for each element of a list: find the biggest value \# between that element and the end of the list def find_biggest_after(arglist):
pos_list = []
for idx0 in range(len(arglist)):
biggest = arglist[idx0]
for idx1 in range(idx0+1, len(arglist)): biggest $=\max ($ arglist[idx1], biggest)
pos_list.append(biggest)
return pos_list

Input size vs. run time: max()

EXERCISE

\# for each element of a list: find the biggest value \# between that element and the end of the list def find_biggest_after(arglist):
pos_list = []
for idx0 in range(len(arglist)):
biggest = max(arglist[idx0:]) \# library code pos_list.append(biggest)
return pos_list

Worst-case big-O complexity = ???

WARM-UP

What is the worst case running time of the following function?

$$
4 n^{2}+5 n+2
$$

Why can we ignore the constants and lower order terms?

Is analyzing worst-case running time important?

How many Web pages are there?

