
CSc 120
Introduction to Computer

Programming II

Adapted from slides
by Dr. Saumya Debray

10:	Linked	Lists	

Python lists: reprise

2	

L	

L[i]	:	O(1)	

L.insert:		O(n)	

L.append:		O(1)	

Can	we	do	inser:on	and	concatena:on	in	O(1)	
:me?			
(complexity	of	other	opera:ons	may	change).	
⇒	"Linked	list"	

Ques.on:	

concatena:ng	two	lists:		O(n)	

Python lists: reprise

3	

• Key	feature:	L[i]	and	L[i+1]	are	
adjacent	in	memory	

	

•  This	makes	accessing	L[i]	very	
efficient	
‒ O(1)	

	

•  Inser:on	and	concatena:on	
require	moving	O(n)	elements	
‒ O(n)	

info	about	the	
list	
“aaa”	

“bbb”	

“ccc”	

“ddd”	

“eee”	

“fff”	

“ggg”	

“hhh”	

lis
t	e

le
m
en

ts
	

ex
tr
a	
sp
ac
e	

he
ad
er
	

Linked lists
•  To	get	O(1)	inser:on	and	
concatena:on,	we	cannot	afford	
to	move	O(n)	list	elements	

• We	have	to	relax	the	requirement	
that	ith	element	is	adjacent	to	
(i+1)st	element	
‒ any	element	can	be	anywhere	in	
memory	

•  Each	element	has	to	tell	us	where	
to	find	the	next	element	

4	

"aaa"	

"ccc"	

"bbb"	

…
…

…
	

…
	

memory	

linked lists

5	

Linked lists
	
•  Linked	list:	
	

A	collec:on	of	elements	where	each	element	has	a	value	
and	a	reference	to	the	next	element.	
	
There	is	at	least	one	variable	that	references	the	
beginning	of	the	list.		

	
	

6	

Linked lists
Each	element	of	the	list	has	a	reference	to	the	next	
list	element	

7	

"aaa"	 "bbb"	 "ccc"	 "ddd"	

L	

next	 next	next	next	

Linked lists
With	each	element	of	the	list,	keep	a	reference	to	
the	next	list	element	

8	

"aaa"	 "bbb"	 "ccc"	 "ddd"	

L	

next	 next	next	next	

"nodes"	 each	node	in	the	
list	has	a	reference	
to	the	next	node	

Linked lists
With	each	element	of	the	list,	keep	a	reference	to	
the	next	list	element	

9	

"aaa"	 "bbb"	 "ccc"	 "ddd"	

L	

next	 next	next	next	

"nodes"	 each	node	in	the	
list	has	a	reference	
to	the	next	node	

Let's	explore	this	idea	using	a	file	for	a	"node"	

Linked lists
With	each	element	of	the	list,	keep	a	reference	to	
the	next	list	element	

10	

"aaa"	 "bbb"	 "ccc"	 "ddd"	

L	

next	 next	next	next	

"nodes"	
Let's	explore	this	idea	using	a	file	for	a	"node"	

each	file	has	two	lines:	
§  			the	first	line	is	a	value	
§  			the	second	line	is	a	reference	to	the	next	"node"	(file)	

Linked lists
	
•  Let's	explore	this	idea	using	a	file	for	a	"node"	

‒ each	file	has	two	lines:	
§  			the	first	line	is	a	value	
§  			the	second	line	is	a	reference	to	the	next	"node"	(file)	

Sample	file	“node”:	filename	is	24.txt	
			value:	aaa	
			next:	3.txt	
	

	
	

11	

EXERCISE
	
•  Exploring	linked	lists	using	files	as	nodes	
	

How	would	we	add	the	word	"total"	to	our	linked	lists	of	
files	so	that	the	sentence	reads:	
						The	expert	in	anything	was	once	a	total	beginner.	

	

	
	

12	

EXERCISE
	
•  Exploring	linked	lists	using	files	as	nodes	
	

How	would	we	add	the	word	"total"	to	our	linked	lists	of	
files	so	that	the	sentence	reads:	
						The	expert	in	anything	was	once	a	total	beginner.	
	
Create	a	new	"node"	(a	new	file)	

The	first	line	is	"total"	
The	second	line	is	19.txt	
What	else	do	we	have	to	do?		
					-	modify	the	file	node	for	the	value	"a"	to	change	its	reference	
	
	

	
	

13	

Linked lists
References	are	addresses	in	memory.	
Here	is	the	diagram	with	explicit	addresses	(simplified).	

14	

"aaa"	

432	

"bbb"	

64	

"ccc"	

132	
"ddd"	

None	

L	

next	 next	next	next	

address	432	address	96	 address	64	 address	132	96	

Insertion
Consider	inser:ng	a	new	node	into	the	linked	list	

15	

"aaa"	

432	

"bbb"	

64	

"ccc"	

132	
"ddd"	

None	

L	

next	 next	next	next	

address	432	address	96	 address	64	 address	132	96	

Linked lists
Specifically,	add	a	new	node	between	"bbb"	and	
"ccc".		What	do	we	change?	

16	

"aaa"	

432	

"bbb"	

64	

"ccc"	

132	
"ddd"	

None	

L	

next	 next	next	next	

address	432	address	96	 address	64	 address	132	96	

"qqq"	
next	

address	500	

Insertion
Specifically,	add	a	new	node	between	"bbb"	and	
"ccc".		What	do	we	change?	

17	

"aaa"	

432	

"bbb"	

64	

"ccc"	

132	
"ddd"	

None	

L	

next	 next	next	next	

address	432	address	96	 address	64	 address	132	96	

"qqq"	

			64	next	

address	500	

Insertion
We	want	to	add	a	new	node	between	"bbb"	and	
"ccc".	What	do	we	change?	

18	

"aaa"	

432	

"bbb"	

		500	

"ccc"	

132	
"ddd"	

None	

L	

next	 next	next	next	

address	432	address	96	 address	64	 address	132	96	

"qqq"	

			64	next	

address	500	

Insertion
Set	the	next	references	appropriately.	What	is	the	
complexity	of	inser:on?	

19	

"aaa"	 "bbb"	 "ccc"	 "ddd"	

L	

next	 next	next	next	

"qqq"	
next	

O(1)*	

*assuming	we	have	a	reference	to	
the	node	of	inser:on	

Insertion
To	insert	an	element	into	a	linked	list:	set	next	
references	appropriately	

20	

"aaa"	 "bbb"	 "ccc"	 "ddd"	

L	

next	 next	next	next	

"qqq"	
next	

"sss"	
next	

"rrr"	
next	

O(1)	

Concatenation
To	concatenate	two	linked	lists:	set	next	reference	of	
end	of	first	list	to	refer	to	beginning	of	second	list	

21	

"aaa"	 "bbb"	 "ccc"	 "ddd"	

L	

next	 next	next	next	

"qqq"	
next	

"sss"	
next	

"rrr"	
next	

*	once	we	have	a	reference	to	the	
			end	of	the	first	list	

O(1)*	

implementation

22	

Nodes: Implementation
class	Node:	
					def	_	_init_	_(self,	value):	
										self._value	=	value		#	reference	to	the	object	at	that	node	
										self._next	=	None		#	reference	to	the	next	node	in	the	list	
	

23	

Ge:ers:	
				def	value(self):	
										return	self._value	
	

				def	next(self):	
										return	self._next	

Se:ers:	
				def	set_value(self,	value):	
										self._value	=	value	

				def	set_next(self,	next):	
										self._next	=	next	

Linked Lists: Implementation
A	linked	list	is	just	(a	reference	to)	a	sequence	of	
nodes	

24	

LinkedList	

nodes	

Linked Lists: Implementation
A	linked	list	is	just	(a	reference	to)	a	sequence	of	
nodes	

class	LinkedList:	
					def	_	_init_	_(self):	
											self._head	=	None	
	

25	

LinkedList	

nodes	

Linked Lists: Implementation
A	linked	list	is	just	(a	reference	to)	a	sequence	of	
nodes	

26	

LinkedList	

head	of	
the	list	

tail	of	
the	list	

class	LinkedList:	
					def	_	_init_	_(self):	
											self._head	=	None	
	

Linked Lists: Implementation
class	LinkedList:	
					def	_	_init_	_(self):	
											self._head	=	None	
	

				def	is_empty(self):	
										return	self._head	==	None	
	

				def	head(self):	
										return	self._head	

27	

addition
at the head of the list

28	

Adding a node at the head

29	

'aa'	 'bb'	

'dd'	

'aa'	 'bb'	

'dd'	

new	

new	

L	

L	

+	
_next	

_next	

_head	

Adding a node at the head

30	

'aa'	 'bb'	

'dd'	

'aa'	 'bb'	

'dd'	

new	

new	

L	

+	

Sequence	of	opera:ons	
for	an	add	method:	
1.	new._next	=	L._head	

_next	

_next	

L	
_head	

2.	L._head	=	new	

Adding a node at the head
class	LinkedList:	
			def	_	_init_	_(self):	
								self._head	=	None	
	

				#	add	a	node	new	at	the	head	of	the	linked	list	
				def		add(self,	new):	
									new._next	=	self._head	
									self._head	=	new	

31	

O(1)	

Creating a linked list: Example
class	Node:	
				def	_	_init_	_(self,	value):	
								self._value	=	value	
								self._next	=	None	
	

				.	.	.	
	

class	LinkedList:	
				def	_	_init_	_(self):	
								self._head	=	None	
	
	

				def	add(self,	new):	
								new._next	=	self._head	
								self._head	=	new	

32	

aa	
bb	
cc	

infile.txt	
infile	=	open(“infile.txt”)	
my_list	=	LinkedList()	
for	line	in	infile:	
				this_node	=	Node(line)	
				my_list.add(this_node)	

Creating a linked list: Example
class	Node:	
				def	_	_init_	_(self,	value):	
								self._value	=	value	
								self._next	=	None	
	

				.	.	.	
	

class	LinkedList:	
				def	_	_init_	_(self):	
								self._head	=	None	
	
	

				def	add(self,	new):	
								new._next	=	self._head	
								self._head	=	new	

33	

aa	
bb	
cc	

infile.txt	
infile	=	open(“infile.txt”)	
my_list	=	LinkedList()	
for	line	in	infile:	
				this_node	=	Node(line)	
				my_list.add(this_node)	

¢

None	

my_list	

LinkedList	

_head	

Creating a linked list: Example
class	Node:	
				def	_	_init_	_(self,	value):	
								self._value	=	value	
								self._next	=	None	
	

				.	.	.	
	

class	LinkedList:	
				def	_	_init_	_(self):	
								self._head	=	None	
	
	

				def	add(self,	new):	
								new._next	=	self._head	
								self._head	=	new	

34	

aa	
bb	
cc	

infile.txt	
infile	=	open(“infile.txt”)	
my_list	=	LinkedList()	
for	line	in	infile:	
				this_node	=	Node(line)	
				my_list.add(this_node)	

¢

None	

my_list	

LinkedList	

_head	

line	

“aa”	

Creating a linked list: Example
class	Node:	
				def	_	_init_	_(self,	value):	
								self._value	=	value	
								self._next	=	None	
	

				.	.	.	
	

class	LinkedList:	
				def	_	_init_	_(self):	
								self._head	=	None	
	
	

				def	add(self,	new):	
								new._next	=	self._head	
								self._head	=	new	

35	

aa	
bb	
cc	

infile.txt	
infile	=	open(“infile.txt”)	
my_list	=	LinkedList()	
for	line	in	infile:	
				this_node	=	Node(line)	
				my_list.add(this_node)	

¢

None	

my_list	

LinkedList	

_head	

line	

None	

Node	
this_node	

“aa”	

Creating a linked list: Example
class	Node:	
				def	_	_init_	_(self,	value):	
								self._value	=	value	
								self._next	=	None	
	

				.	.	.	
	

class	LinkedList:	
				def	_	_init_	_(self):	
								self._head	=	None	
	
	

				def	add(self,	new):	
								new._next	=	self._head	
								self._head	=	new	

36	

aa	
bb	
cc	

infile.txt	
infile	=	open(“infile.txt”)	
my_list	=	LinkedList()	
for	line	in	infile:	
				this_node	=	Node(line)	
				my_list.add(this_node)	

¢ None	

my_list	

LinkedList	

_head	

line	

None	

Node	
this_node	

“aa”	

¢

Creating a linked list: Example
class	Node:	
				def	_	_init_	_(self,	value):	
								self._value	=	value	
								self._next	=	None	
	

				.	.	.	
	

class	LinkedList:	
				def	_	_init_	_(self):	
								self._head	=	None	
	
	

				def	add(self,	new):	
								new._next	=	self._head	
								self._head	=	new	

37	

aa	
bb	
cc	

infile.txt	
infile	=	open(“infile.txt”)	
my_list	=	LinkedList()	
for	line	in	infile:	
				this_node	=	Node(line)	
				my_list.add(this_node)	¢

my_list	

LinkedList	

_head	

line	

None	

Node	
this_node	

“aa”	
¢

Creating a linked list: Example
class	Node:	
				def	_	_init_	_(self,	value):	
								self._value	=	value	
								self._next	=	None	
	

				.	.	.	
	

class	LinkedList:	
				def	_	_init_	_(self):	
								self._head	=	None	
	
	

				def	add(self,	new):	
								new._next	=	self._head	
								self._head	=	new	

38	

aa	
bb	
cc	

infile.txt	
infile	=	open(“infile.txt”)	
my_list	=	LinkedList()	
for	line	in	infile:	
				this_node	=	Node(line)	
				my_list.add(this_node)	

¢

my_list	

LinkedList	

_head	

line	

None	

Node	
this_node	

“aa”	“bb”	

Creating a linked list: Example
class	Node:	
				def	_	_init_	_(self,	value):	
								self._value	=	value	
								self._next	=	None	
	

				.	.	.	
	

class	LinkedList:	
				def	_	_init_	_(self):	
								self._head	=	None	
	
	

				def	add(self,	new):	
								new._next	=	self._head	
								self._head	=	new	

39	

aa	
bb	
cc	

infile.txt	
infile	=	open(“infile.txt”)	
my_list	=	LinkedList()	
for	line	in	infile:	
				this_node	=	Node(line)	
				my_list.add(this_node)	

¢

my_list	

LinkedList	

_head	

line	

None	

Node	
this_node	

Node	

“aa”	“bb”	

Creating a linked list: Example
class	Node:	
				def	_	_init_	_(self,	value):	
								self._value	=	value	
								self._next	=	None	
	

				.	.	.	
	

class	LinkedList:	
				def	_	_init_	_(self):	
								self._head	=	None	
	
	

				def	add(self,	new):	
								new._next	=	self._head	
								self._head	=	new	

40	

aa	
bb	
cc	

infile.txt	
infile	=	open(“infile.txt”)	
my_list	=	LinkedList()	
for	line	in	infile:	
				this_node	=	Node(line)	
				my_list.add(this_node)	¢

my_list	

LinkedList	

_head	

line	

¢

Node	

None	

Node	
this_node	

“aa”	“bb”	

Creating a linked list: Example
class	Node:	
				def	_	_init_	_(self,	value):	
								self._value	=	value	
								self._next	=	None	
	

				.	.	.	
	

class	LinkedList:	
				def	_	_init_	_(self):	
								self._head	=	None	
	
	

				def	add(self,	new):	
								new._next	=	self._head	
								self._head	=	new	

41	

aa	
bb	
cc	

infile.txt	
infile	=	open(“infile.txt”)	
my_list	=	LinkedList()	
for	line	in	infile:	
				this_node	=	Node(line)	
				my_list.add(this_node)	¢

my_list	

LinkedList	

_head	

line	

¢

None	

Node	
this_node	

Node	

“aa”	“bb”	

Creating a linked list: Example
class	Node:	
				def	_	_init_	_(self,	value):	
								self._value	=	value	
								self._next	=	None	
	

				.	.	.	
	

class	LinkedList:	
				def	_	_init_	_(self):	
								self._head	=	None	
	
	

				def	add(self,	new):	
								new._next	=	self._head	
								self._head	=	new	

42	

aa	
bb	
cc	

infile.txt	
infile	=	open(“infile.txt”)	
my_list	=	LinkedList()	
for	line	in	infile:	
				this_node	=	Node(line)	
				my_list.add(this_node)	

¢

my_list	

LinkedList	

_head	

line	

None	

Node	
this_node	

Node	

“aa”	“bb”	“cc”	

Creating a linked list: Example
class	Node:	
				def	_	_init_	_(self,	value):	
								self._value	=	value	
								self._next	=	None	
	

				.	.	.	
	

class	LinkedList:	
				def	_	_init_	_(self):	
								self._head	=	None	
	
	

				def	add(self,	new):	
								new._next	=	self._head	
								self._head	=	new	

43	

aa	
bb	
cc	

infile.txt	
infile	=	open(“infile.txt”)	
my_list	=	LinkedList()	
for	line	in	infile:	
				this_node	=	Node(line)	
				my_list.add(this_node)	

¢

my_list	

LinkedList	

_head	

line	

None	

Node	

None	

Node	
this_node	

Node	

“aa”	“bb”	“cc”	

Creating a linked list: Example
class	Node:	
				def	_	_init_	_(self,	value):	
								self._value	=	value	
								self._next	=	None	
	

				.	.	.	
	

class	LinkedList:	
				def	_	_init_	_(self):	
								self._head	=	None	
	
	

				def	add(self,	new):	
								new._next	=	self._head	
								self._head	=	new	

44	

aa	
bb	
cc	

infile.txt	
infile	=	open(“infile.txt”)	
my_list	=	LinkedList()	
for	line	in	infile:	
				this_node	=	Node(line)	
				my_list.add(this_node)	¢

my_list	

LinkedList	

_head	

line	

¢

None	

Node	
this_node	

Node	Node	

“aa”	“bb”	“cc”	

Creating a linked list: Example
class	Node:	
				def	_	_init_	_(self,	value):	
								self._value	=	value	
								self._next	=	None	
	

				.	.	.	
	

class	LinkedList:	
				def	_	_init_	_(self):	
								self._head	=	None	
	
	

				def	add(self,	new):	
								new._next	=	self._head	
								self._head	=	new	

45	

aa	
bb	
cc	

infile.txt	
infile	=	open(“infile.txt”)	
my_list	=	LinkedList()	
for	line	in	infile:	
				this_node	=	Node(line)	
				my_list.add(this_node)	¢

my_list	

LinkedList	

_head	

line	

¢

None	

Node	
this_node	

Node	Node	

“aa”	“bb”	“cc”	

Creating a linked list: Example
class	Node:	
				def	_	_init_	_(self,	value):	
								self._value	=	value	
								self._next	=	None	
	

				.	.	.	
	

class	LinkedList:	
				def	_	_init_	_(self):	
								self._head	=	None	
	
	

				def	add(self,	new):	
								new._next	=	self._head	
								self._head	=	new	

46	

aa	
bb	
cc	

infile.txt	
infile	=	open(“infile.txt”)	
my_list	=	LinkedList()	
for	line	in	infile:	
				this_node	=	Node(line)	
				my_list.add(this_node)	

my_list	

LinkedList	

_head	

line	

“aa”	“bb”	“cc”	

None	

Node	
this_node	

Node	Node	

Adding a node at the head

def		add(self,	new):	

									new._next	=	self._head	

									self._head	=	new	

47	

Changing	the	order	of	assignments	
does	not	work:	
	

def	broken_add(self,	new):	
							self._head	=	new	
							new._next	=	self._head	

	
	 'aa'	 'bb'	

'dd'	new	
+	
_next	

L	
_head	 'aa'	 'bb'	

'dd'	new	
_next	

L	
_head	

appending
to the tail of the list

48	

Adding a node at the tail
To	add	a	node	X	at	the	end	(i.e.,	tail)	of	a	list	L:	

1.  find	the	last	element	Y	of	L	
2.  Y._next	=	X	
	

49	

Adding a node at the tail
To	add	a	node	X	at	the	end	(i.e.,	tail)	of	a	list	L:	

1.  find	the	last	element	Y	of	L	
2.  Y._next	=	X	
	

50	

O(n)	
O(1)	

Adding a node at the tail
To	add	a	node	X	at	the	end	(i.e.,	tail)	of	a	list	L:	

1.  find	the	last	element	Y	of	L	
2.  Y._next	=	X	

Gotchas	to	watch	out	for:	
• what	if	there	is	no	last	element?	

‒ how	can	we	tell?	
‒ what	should	we	do?	

51	

EXERCI
SE

EXERCISE
	
• Consider	a	linked	list	whose	value	alributes	consist	
of	strings.			

	
• Write	a	method	replace(arg1, arg2)	that	
replaces	the	value	alributes	of	all	nodes	that	equal	
arg1	with	arg2.			

	
	

	
	

52	

finding the nth element

53	

Finding the nth element
class	LinkedList:	
	

				#	return	the	node	at	posi>on	n	of	the	linked	list	
				def		get_element(self,	n):	
									elt	=	self._head	
										while	elt	!=	None	and	n	>	0:	
															elt	=	elt._next	
															n	‒=	1	
									return	elt	
	

54	

O(n)	

insertion

55	

Inserting a node
Suppose	we	want	to	insert	a	node	X	into	a	list	here:	

56	

"aaa"	 "bbb"	 "ccc"	

"ddd"	
X

…	…	

Then	we	have	to	adjust	the	next-node	reference	on	
the	node	Y	just	before	that	posi:on	

Y

Inserting a node
Suppose	we	want	to	insert	a	node	X	into	a	list	here:	

57	

"aaa"	 "bbb"	 "ccc"	

"ddd"	
X

…	…	

Then	we	have	to	adjust	the	next-node	reference	on	
the	node	Y	just	before	that	posi:on	

Y

Inserting a node
The	order	of	opera:ons	is	important:	

58	

"aaa"	 "bbb"	 "ccc"	

"ddd"	
X

…	…	

1.  X._next	=	Y._next	

Y

_next	

_next	

Inserting a node
The	order	of	opera:ons	is	important:	

59	

"aaa"	 "bbb"	 "ccc"	

"ddd"	
X

…	…	

1.  X._next	=	Y._next	
2.  Y._next	=	X	

Y

_next	

_next	

Inserting a node
Inser:ng	a	node	X	at	
posi:on	n	in	a	list	L:	
1.  find	the	node	Y	at	

posi:on	n	‒	1	
‒  iterate	n	‒	1	posi:ons	
from	the	head	of	the	list*	

2.  insert	X	aoer	Y	
‒ adjust	next-node	
references	as	in	previous	
example	

Y	=		L._head	
for	i	in	range(n-1):	
				Y	=	Y._next	
	

X._next	=	Y._next	
Y._next	=	X	
	

60	

* do	something	sensible	if	the	list	has	
fewer	than	n-1	nodes	

O(n)	

O(1)	

Inserting a node
class	LinkedList:	
	

				#	insert	a	node	new	at	posi>on	n	
				def		insert(self,	new,	n):	
												if	n	==	0:	
																		self.add(new)	
												else:	
																		prev	=	self.get_element(n‒1)	
																		new.next	=	prev.next	
																		prev.next	=	new	

61	

deletion

62	

Deleting a node
Suppose	we	want	to	delete	this	node:	

63	

"aaa"	 "bbb"	 "ccc"	

X

…	…	

Deleting a node
Suppose	we	want	to	delete	this	node:	

64	

"aaa"	 "bbb"	 "ccc"	

X

…	…	 X	

Deleting a node
Suppose	we	want	to	delete	this	node:	

65	

"aaa"	 "bbb"	 "ccc"	

X

…	…	 X	

1.  find	the	node	Y	just	before	X	
(i.e.,	Y._next	==	X)	

2.  Y._next	=	X._next	
3.  X._next	=	None	

Y

O(n)	
O(1)	

Deleting a node
class	LinkedList:	
						#	delete	a	node	X	
						def	delete(self,	X):	
												if	self._head	==	X:													#	X	is	the	head	of	the	list	
																		self._head	=	X._next	
												else:	
																		Y	=	self._head	
																		while	Y._next	!=	X:	
																									Y	=	Y._next	
																		Y._next	=	X._next	
												X.next	=	None	

66	

deletion
(revisited)

67	

Deleting a node
Suppose	we	want	to	delete	this	node:	

68	

"aaa"	 "bbb"	 "ccc"	

X

…	…	

Deleting a node
Suppose	we	want	to	delete	this	node:	

69	

"aaa"	 "bbb"	 "ccc"	

X

…	…	 X	

Y

Deleting a node
Suppose	we	want	to	delete	this	node:	

70	

"aaa"	 "bbb"	 "ccc"	

X

…	…	 X	

	def		delete(self,	x):	
									r	=	self._head	
										while	r	!=	None:	
															if	r	==	x:	
																		<delete	node	x>	
																			return	
															r	=	r._next	

• Does	this	code	palern	
work	for	delete?	

•  It	worked	for	len,	
replace,	count_vowels	…	

	

Deleting a node
Suppose	we	want	to	delete	this	node:	

71	

"aaa"	 "bbb"	 "ccc"	

X

…	…	 X	

	def		delete(self,	x):	
									r	=	self._head	
										while	r	!=	None:	
															if	r	==	x:	
																		<delete	node	x>	
																			return	
															r	=	r._next	

• No,	does	not	work	
• We	need	a	reference	to	
the	previous	node	

Deleting a node
class	LinkedList:	
						#	delete	a	node	X	
						def	delete(self,	X):	
												if	self._head	==	X:													#	X	is	the	head	of	the	list	
																		self._head	=	X._next	
												else:	
																		Y	=	self._head	
																		while	Y._next	!=	X:	
																									Y	=	Y._next	
																		Y._next	=	X._next	
												X.next	=	None	

72	

concatenation

73	

Concatenating two linked lists
class	LinkedList:	
						#	concatenate	list2	at	the	end	of	the	list	
						def	concat(self,	list2):		
												if	self._head	==	None:						#	list	is	empty	
																		self._head	=	list2._head	
												else:	
																		tail	=	self._head	
																		while	tail._next	!=	None:	
																									tail	=	tail._next	
																			tail.next	=	list2._head	

74	

O(n)	
O(1)	

maintaining a tail
reference

75	

Maintaining a tail reference
A	varia:on	is	to	also	maintain	a	reference	to	the	tail	
of	the	list	

76	

LinkedList	 class	LinkedList:	
					def	_	_init_	_(self):	
											self._head	=	None	
												self._tail	=	None	
	

_head	
_tail	

Tail references and concatenation

77	

list1	

_head	
_tail	

list2	 _head	
_tail	

“aa”	 “cc”	“bb”	

“dd”	 “ff”	“ee”	

Tail references and concatenation

78	

list1	

_head	
_tail	

list2	 _head	
_tail	

“aa”	 “cc”	“bb”	

“dd”	 “ff”	“ee”	

Tail references and concatenation

79	

list1	

_head	
_tail	

list2	 _head	
_tail	

“aa”	 “cc”	“bb”	

“dd”	 “ff”	“ee”	

Tail references and concatenation

80	

list1	

_head	
_tail	

list2	 _head	
_tail	

“aa”	 “cc”	“bb”	

“dd”	 “ff”	“ee”	

Maintaining a tail reference
• Concatena:on	and	append	become	O(1):	
												def	concat(self,	list2):	
																			if	self._head	==	None:	
																									self._head	=	list2._head	
																									self._tail	=	list2._tail	
																			else:	
																									self._tail._next	=	list2._head	
																									self._tail	=	list2._tail	
	

• All	linked	list	opera:ons	must	now	make	sure	that	
the	tail	reference	is	kept	properly	updated	

81	

Linked lists: summary
Opera.on	 Without	tail	reference	 With	tail	reference	

add	to	front	of	list	 O(1)	

append	to	end	of	list	 O(n)	 O(1)	

find	nth	element	 O(n)	

insert	 																											O(1)	if	prev.	node	is	available	
																											O(n)		otherwise	

delete	 																											O(1)	if	prev.	node	is	available	
																											O(n)		otherwise	

concatenate	 O(n)	 O(1)	

82	

