CSc 120

Introduction to Computer
Programming i

Adapted from slides
by Dr. Saumya Debray

10: Linked Lists

Python lists: reprise

] \L.lnsert:) O(n)

)
(\
Lé/: 0(1) L.append: O(1)

concatenating two lists: O(n)

Question: Can we do insertion and concatenation in O(1)
time?

(complexity of other operations may change).
=> "Linked list"

Python lists: reprise

. : g ||
* Key feature: L[i] and L[i+1] are g { | Mnfo aﬁ;’t“t the
adjacent in memory = b P~
]]] llbbb”
o
ThI.S .makes accessing L[i] very . -
C
efﬁCIent Cé) uddd”
- 0(1) % ueee”
é’ Ilfff”
* Insertion and concatenation “ogg”
require moving O(n) elements “hhh”
) =

Linked lists

* To get O(1) insertion and
concatenation, we cannot afford
to move O(n) list elements

* We have to relax the requirement
that it" element is adjacent to
(i+1)t element

— any element can be anywhere in
memory

e Each element has to tell us where
to find the next element

memory

llaaall

"CCC"

Ilbbbll

linked lists

Linked lists

e Linked list:

A collection of elements where each element has a value
and a reference to the next element.

There is at least one variable that references the
beginning of the list.

Linked lists

Each element of the list has a reference to the next
list element

llaaall Ilbbbll / IICCCII / "ddd"

next “ next “ next “ next

Linked lists

With each element of the list, keep a reference to
the next list element

naaan "bbb" "CCC" lldddu

ne “ next “ next “ next

\)

each node in the
list has a reference
to the next node

"nodes"

Linked lists

With each element of the list, keep a reference to
the next list element

naaan "bbb" "CCC" lldddu

ne “ next “ next “ next

\)
|

each node in the
list has a reference
to the next node

"nodes"

Let's explore this idea using a file for a "node"

Linked lists

With each element of the list, keep a reference to
the next list element

naaan "bbb" "CCC" lldddu

ne “ next “ next “ next

Y
"nodes"

Let's explore this idea using a file for a "node"
each file has two lines:
= thefirstlineis a value
= the second line is a reference to the next "node" (file) .

Linked lists

* Let's explore this idea using a file for a "node"
— each file has two lines:
= thefirstlineis a value
= the second line is a reference to the next "node" (file)

Sample file “node”: filename is 24.txt

value: aaa
next: 3.txt

11

EXERCISE

* Exploring linked lists using files as nodes

How would we add the word "total" to our linked lists of
files so that the sentence reads:

The expert in anything was once a total beginner.

12

EXERCISE

* Exploring linked lists using files as nodes

How would we add the word "total" to our linked lists of
files so that the sentence reads:

The expert in anything was once a total beginner.

Create a new "node" (a new file)
The first line is "total"
The second line is 19.txt
What else do we have to do?
- modify the file node for the value "a" to change its reference

13

Linked lists

References are addresses in memory.

Here is the diagram with explicit addresses (simplified).

L 96 ~ address 96 address 432 address 64 address 132

llaaall Ilbbbll / IICCCII / "ddd"
next | 432 next “

64 next| 132 “ next None

Insertion

Consider inserting a new node into the linked list

L 96 ~ address 96 address 432 address 64 address 132

naaan "bbb" / "CCC" / "ddd"
7

next | 432 4 next| 64 next| 132 4 next| None

Linked lists

Specifically, add a new node between "bbb" and

L 96

next

address 96

ddaad

432

7

next

ccc". What do we change?

address 432 address 64 address 132
"bbb" "CCC" / "ddd"
64 “ next | 132 next | None
address 500
Iquqll

next

16

Insertion

Specifically, add a new node between "bbb" and

L 96

next

address 96

ddaad

432

7

next

ccc". What do we change?

address 432

Ilbbbll

64

7

address 500

next

address 64

/ lldddu

next

address 132

None

17

Insertion

We want to add a new node between "bbb" and
"ccc". What do we change?

L 96

next

address 96

ddaad

432

7

next

address 432

Ilbbbll

500 Y

address 500

next

address 64

/ lldddu

next

address 132

None

18

Insertion

Set the next references appropriately. What is the

complexity of insertion?

next

ddaad

next

llbbbll

<

next

O(1)*

/ lldddu

\

next

*assuming we have a reference to

the node of insertion

19

Insertion

O(1)

To insert an element into a linked list: set next
references appropriately

next

ddaad

next

next

Ilbbbll

/ lldddu

<

next

next

next

Concatenation

To concatenate two linked lists: set next reference of
end of first list to refer to beginning of second list

ddaad

next “

next

llbbbll

7

O(1)*

/ "ddd"
next ‘~i::::>

next “

next

next

1 next

* once we have a reference to the
end of the first list

21

Implementation

Nodes: Implementation

class Node:
def __init__(self, value):
self. value =value # reference to the object at that node

self. next = None # reference to the next node in the list

Getters:
def value(self): def next(self):
return self. value return self. _next
Setters:
def set_value(self, value): def set_next(self, next):

self. value = value self. _next = next

23

Linked Lists: Implementation

A linked list is just (a reference to) a sequence of
nodes

LinkedList

24

Linked Lists: Implementation

A linked list is just (a reference to) a sequence of
nodes

LinkedList class LinkedList:
def _init__(self):

self. head = None

25

Linked Lists: Implementation

A linked list is just (a reference to) a sequence of
nodes

LinkedList class LinkedList:
def _init__(self):

self. head = None

head of tail of
the list the list

26

Linked Lists: Implementation

class LinkedList:
def _init__(self):

self. head = None

def is_empty(self):
return self. head == None

def head(self):
return self. _head

27

addition
at the head of the list

Adding a node at the head

_head

|aal

new

_next

lddl

new

_next

'dd

|aa|
/
1

29

Adding a node at the head

Sequence of operations
for an add method:

A 'bb!

\ 4

dd

M 'bb!

L
_head i
4.
new — 'dd'
_hext
L /
new 'dd’

_next

1. new. next=L. head

M 'bb’

L |aa|
/
new 'dd'
_hext =

2.L._head = new

L ? 'aa’
new 'dd’

_hext

30

Adding a node at the head

class LinkedList:
def _init__(self):

self. head = None 0(1)

add a node new at the head of the linked list
def add(self, new):
new._ next = self. head

self. head = new

31

Creating a linked list: Example

class Node:
def __init_ _(self, value):
self._value = value
self._next = None

class LinkedList:
def _ _init_ _(self):
self._head = None

def add(self, new):
new._next = self. _head
self. head = new

infile = open(“infile.txt”)

my_list = LinkedList()

for line in infile:
this_node = Node(line)
my_list.add(this_node)

infile.txt

dad

bb

CC

32

Creating a linked list: Example

class Node: infile = open(“infile.txt”)
def __init__(self, value): -} my_list = LinkedList() infile.txt
self._value = value for line in infile: aa
self._next = None this_node = Node(line) kc’z’

my_list.add(this_node)

class LinkedList:
def __init__(self):
self._ head = None my_Iist?
def add(self, new):
new._next = self._head _head| None
self._head = new

Creating a linked list: Example

class Node:
def __init__(self, value):
self._value = value
self._next = None

class LinkedList:
def __init__(self):
self._head = None

def add(self, new):
new._next = self. _head
self. head = new

infile = open(“infile.txt”)
my_list = LinkedList()

—} for line in infile:

this_node = Node(line)
my_list.add(this_node)

my_list ?

_head

None

infile.txt

dad

bb

CC

line

34

Creating a linked list: Example

class Node: infile = open(“infile.txt”)
def __init__(self, value): my_list = LinkedList() infile.txt
self._value = value for line in infile: aa
self._next = None -} this_node = Node(line) bb
my_list.add(this_node) cc
class LinkedList:
def __init__(self): _
self._head = None my_listy line
def add(self, new):
new._next = self._head _head| None
self._head = new
- l(aa”
this_node /1
/
None

35

Creating a linked list: Example

class Node: infile = open(“infile.txt”)
def __init__(self, value): my_list = LinkedList() infile.txt
self._value = value for line in infile: aa
self._next = None this_node = Node(line) bb
=) my_list.add(this_node) cc
class LinkedList:
def __init__(self): _
self._head = None my_listy line
def add(self, new):
-} new._next = self._head _head| None
self._head = new
- l(aa”
this_node /1
/
None

36

Creating a linked list: Example

class Node: infile = open(“infile.txt”)
def __init__(self, value): my_list = LinkedList() infile.txt
self._value = value for line in infile: aa
self._next = None this_node = Node(line) bb
=) my_list.add(this_node) cc
class LinkedList:
def __init__(self): _
self._head = None my_listy line
def add(self, new):
new._next = self._head _head -
-} self. head = new
- l(aa”
this_node /1
/
None

37

Creating a linked list: Example

class Node: infile = open(“infile.txt”)
def __init__(self, value): my_list = LinkedList() infile.txt
self._value = value —} for line in infile: aa
self._next = None this_node = Node(line) bb
my_list.add(this_node) cc
class LinkedList:
def __init__(self): _
self._head = None my_listy line
def add(self, new):
new._next = self._head _head]
self._head = new
- ((bb” l(aa”
this_node /1
/
None

38

Creating a linked list: Example

class Node: infile = open(“infile.txt”)
def __init__(self, value): my_list = LinkedList() infile.txt
self._value = value for line in infile: aa
self._next = None this_node = Node(line) bb
my_list.add(this_node) cc
class LinkedList:
def __init__(self): _
self._head = None my_listy line
def add(self, new):
new._next = self._head _head]
self._head = new
- ((bb” l(aa”
this_node \ /] /l
/ /
None

39

Creating a linked list: Example

class Node: infile = open(“infile.txt”)
def __init__(self, value): my_list = LinkedList() infile.txt
self._value = value for line in infile: aa
self._next = None this_node = Node(line) bb
=) my_listadd(this_node) cc
class LinkedList:
def __init__(self): _
self._head = None my_listy line
def add(self, new):
new._next = self._head _head]
self._head = new
((bb” l(aa”

this_node
: 2y
\ / / /

- None

40

Creating a linked list: Example

class Node: infile = open(“infile.txt”)
def __init__(self, value): my_list = LinkedList() infile.txt
self._value = value for line in infile: aa
self._next = None this_node = Node(line) bb
=) my_listadd(this_node) £C
class LinkedList:
def __init__(self): _
self._head = None my_listy line
def add(self, new):
new._next = self._head _head ~
_} self._head = new
- ((bb” l(aa”
this_node \ /1 /l
/ /
//v None

41

Creating a linked list: Example

class Node: infile = open(“infile.txt”)
def __init__(self, value): my_list = LinkedList() infile.txt
self._value = value —} for line in infile: aa
self._next = None this_node = Node(line) bb
my_list.add(this_node) cc
class LinkedList:
def __init__(self): _
self._head = None my_listy line
def add(self, new):
new._next = self._head _head N
self._head = new
IICC” ((bb” l(aa”

this_node
: g
\ / / /

- None

42

Creating a linked list: Example

class Node: infile = open(“infile.txt”)
def __init__(self, value): my_list = LinkedList() infile.txt
self._value = value for line in infile: aa
self._next = None this_node = Node(line) bb
my_list.add(this_node) cc
class LinkedList:
def __init__(self): _
self._head = None my_listy line
def add(self, new):
new._next = self._head _head N
self. head = new
- IICC” ((bb” l(aa”
this_node \ /Y /I /l
/ /
None //v None

43

Creating a linked list: Example

class Node: infile = open(“infile.txt”)
def __init__(self, value): my_list = LinkedList() infile.txt
self._value = value for line in infile: aa
self._next = None this_node = Node(line) bb
=) my_list.add(this_node) cc
class LinkedList:
def __init__(self): _
self._head = None my_listy line
def add(self, new):
new._next = self._head _head N
self._head = new
- IICC” ((bb” l(aa”
this_node \ /Y /I /l
/ /
] //v None

44

Creating a linked list: Example

class Node: infile = open(“infile.txt”)
def __init__(self, value): my_list = LinkedList() infile.txt
self._value = value for line in infile: aa
self._next = None this_node = Node(line) bb
=) my_list.add(this_node) cc
class LinkedList:
def __init__(self):
self._head = None my__ ||st line
def add(self, new):
new._next = self._head head
_} self._head = new
l ubb” uaa”
this_node \ /Y /l
/ /
//v None

45

Creating a linked list: Example

class Node: infile = open(“infile.txt”)
def __init__(self, value): my_list = LinkedList() infile.txt
self._value = value for line in infile: aa
self._next = None this_node = Node(line) bb
my_list.add(this_node) as
class LinkedList:
def __init__(self):
self._head = None my_Iisty
def add(self, new):
new. next = self. head _head /
self. head = new
/HCC” (lbb” Ilaall
ok wk
7 None

46

Adding a node at the head

Changing the order of assignments

does not work:

def broken_add(self, new):
self. head = new

new._next = self. head

_head 1+ 'aa’ / 'bb’ _head

new 'dd' new

_next

_next

'aa

. /1‘ 'bb'

Iddl

47

appending
to the tail of the list

Adding a node at the tall

To add a node X at the end (i.e., tail) of a list L:
1. find the last element Y of L
2. Y. next=X

49

Adding a node at the tall

To add a node X at the end (i.e., tail) of a list L:
1. find the lastelementYofL —

2. Y._next= X

O(n)
O(1)

50

Adding a node at the tall

To add a node X at the end (i.e., tail) of a list L:
1. find the last element Y of L
2. Y. next=X

Gotchas to watch out for:

* what if there is no last element? EXE RCI
— how can we tell? SE

— what should we do?

51

EXERCISE

e Consider a linked list whose value attributes consist
of strings.

* Write a method replace (argl, arg2) that
replaces the value attributes of all nodes that equal
argl with arg?2.

52

finding the nt" element

Finding the nt" element

class LinkedList:

return the node at position n of the linked list
def get element(self, n):
elt = self. _head
while elt I=None and n > O: O(n)
elt = elt._next
n—-=1
return elt

54

Insertion

Inserting a node

Suppose we want to insert a node X into a list here:

X
lldddll

/ ||aaa|| llbbbll / ||CCC||
* / vee

Then we have to adjust the next-node reference on
the node Y just before that position

56

Inserting a node

Suppose we want to insert a node X into a list here:

X

IICCCH

] / "aaa"

Then we have to adjust the next-node reference on
the node Y just before that position

Inserting a node

The order of operations is important:

] / "aaa"

X

_hext

lldddll

N

_hext

Ilbbbll

P

ccc"

1. X._next=Y. next

58

Inserting a node

The order of operations is important:

IICCCH

] / "aaa"

_hext

1. X._next=Y. next
2. Y. next=X

Inserting a node

Inserting a node X at
position nin a list L:

1. findthe nodeY at Y = L. head
ition n—1 N
POSITION 71 for i in range(n-1): O(n)

— iterate n—1 positions

from the head of the list* Y =Y. next
2. insert X after Y
— adjust next-node X._next=Y._next O(1)
references as in previous Y. next = X
example -

* do something sensible if the list has
fewer than n-1 nodes

60

Inserting a node

class LinkedList:

insert a node new at position n
def insert(self, new, n):
ifn==0:

self.add(new)
else:

prev = self.get_element(n-1)
new.next = prev.next
prev.next = new

61

deletion

Deleting a node

Suppose we want to delete this node:

/ llaaall

/..

ccc"

63

Deleting a node

Suppose we want to delete this node:

V4

/ llaaall

ccc"

64

Deleting a node

Suppose we want to delete this node:

N

AT

aaa"

"CCC"

</

1. find the node Y just before X |
(i.e., Y. _next ==X)

2. Y. next=X. next

3. X._next =None

O(n)
O(1)

65

Deleting a node

class LinkedList:
delete a node X
def delete(self, X):
if self._head ==X: # X is the head of the list
self. head = X._next
else:
Y = self._head
while Y._next I=X:
Y =Y. next
Y. next = X._next
X.next = None

66

deletion
(revisited)

Deleting a node

Suppose we want to delete this node:

/ llaaall

/..

ccc"

68

Deleting a node

Suppose we want to delete this node:

D

.

aaa"

"CCC"

</

69

Deleting a node

Suppose we want to

/ llaaall

def delete(self, x):
r = self. head
while r = None:
if r==x:
<delete node x>
return
r=r._next

delete this node:

"CCC"

* Does this code pattern

work for delete?

* |t worked for len,
replace, count_vowels ...

70

Deleting a node

Suppose we want to

/ llaaall

def delete(self, x):
r = self. head
while r = None:
if r==x:
<delete node x>
return
r=r._next

delete this node:

"CCC"

* No, does not work

e We need a reference to

the previous node

71

Deleting a node

class LinkedList:
delete a node X
def delete(self, X):
if self._head ==X: # X is the head of the list
self. head = X._next
else:
Y = self._head
while Y._next I=X:
Y =Y. next
Y. next = X._next
X.next = None

72

concatenation

Concatenating two linked lists

class LinkedList:
concatenate list2 at the end of the list
def concat(self, list2):
if self. head == None: #listis empty
self. head = list2. head
else:
tail = self._head)
while tail._next = None: | O(n)
tail = tail._next]
tail.next = list2._head O(1)

74

maintaining a tail
reference

Maintaining a tail reference

A variation is to also maintain a reference to the tail
of the list

LinkedList class LinkedList:

_head ~ def _init__(self):

tai \ N self._head = None

z e self. tail = None

76

Tail references and concatenation

listl 2
N uaa” ubb” ”CC”
_heaf:l \ 7‘ 7&
_tail \ /
/ /

—p “« ” “_._n ”ff”
“head dd ee

list2 — e T~ A
NI A

77

Tail references and concatenation

listl 2
N uaa” ubb” ”CC”
_heaf:l \ 7‘ 7&
_tail \ /
/ /

. _ —p \\ “dd” “og” “f”
I |St2 —heafj \ A
_tail \¢ / 7&
/ /

78

Tail references and concatenation

listl 2
=N

Tail references and concatenation

list1 2
N /"“"

Maintaining a tail reference

e Concatenation and append become O(1):
def concat(self, list2):

if self._head == None:
self. head =list2. head
self. tail = list2. tail

else:
self. tail. next = list2. head
self. tail = list2. tail

 All linked list operations must now make sure that
the tail reference is kept properly updated

81

Linked lists: summary

Without tail reference With tail reference

add to front of list 0O(1)
append to end of list O(n) O(1)
find nth element O(n)

O(1) if prev. node is available

insert O(n) otherwise

O(1) if prev. node is available

delete O(n) otherwise

concatenate O(n) O(1)

82

