
CSc 120
Introduction to Computer Programming

II

Adapted from slides
by Dr. Saumya Debray

14:	Stacks	and	Queues	

linear data structures

2	

Linear data structures
A	linear	data	structure	is	a	collec6on	of	objects	with	
a	straight-line	ordering	among	them	

‒ each	object	in	the	collec6on	has	a	posi*on	
‒  for	each	object	in	the	collec6on,	there	is	a	no6on	of	the	
object	before	it	or	a-er	it	

3	

Data structures we've seen

Linear	

• Python	lists	(aka	arrays)	
•  Linked	lists	

Not	linear	

• Dic6onaries	
•  Sets	

4	

Today's topic

Linear	

• Python	lists	(aka	arrays)	
•  Linked	lists	
•  Stacks	
• Queues	
• Dequeues	

Not	linear	

• Dic6onaries	
•  Sets	
	

5	

Key	property:	the	way	in	which	
objects	are	added	to,	and	
removed	from,	the	collec6on	

stacks

6	

Stacks
A	stack	is	a	linear	data	structure	where	objects	are	
inserted	or	removed	only	at	one	end	

‒ all	inser6ons	and	dele6ons	happen	at	one	par6cular	end	
of	the	data	structure	

‒  this	end	is	called	the	top	of	the	stack	
‒  the	other	end	is	called	the	bo1om	of	the	stack	

7	

inser6ons	and	dele6ons	
happen	at	one	end	

Stacks: insertion of values
Inser6on	of	a	sequence	
of	values	into	a	stack:	
	

				5				17				33				9				43	

8	

stack	
boRom	

stack	
top	

None	

None	

Stacks: insertion of values
Inser6on	of	a	sequence	
of	values	into	a	stack:	
	

				5				17				33				9				43	

9	

stack	
boRom	

stack	
top	

5	

Stacks: insertion of values
Inser6on	of	a	sequence	
of	values	into	a	stack:	
	

				5				17				33				9				43	

10	

stack	
boRom	

stack	
top	

5	
17	

Stacks: insertion of values
Inser6on	of	a	sequence	
of	values	into	a	stack:	
	

				5				17				33				9				43	

11	

stack	
boRom	

stack	
top	

5	
17	
33	

Stacks: insertion of values
Inser6on	of	a	sequence	
of	values	into	a	stack:	
	

				5				17				33				9				43	

12	

stack	
boRom	

stack	
top	

5	
17	
33	
9	

Stacks: insertion of values
Inser6on	of	a	sequence	
of	values	into	a	stack:	
	

				5				17				33				9				43	

13	

stack	
boRom	

stack	
top	

5	
17	
33	
9	
43	

Stacks: insertion of values
	

				5				17				33				9				43	
	

14	

stack	
boRom	

stack	
top	

5	
17	
33	
9	
43	

order	in	which	values	were	inserted	

Stacks: removal of values

15	

stack	
boRom	

stack	
top	

5	
17	
33	
9	
43	

	

				5				17				33				9				43	
	
	
Removing	values	from	
the	stack:	

order	in	which	values	were	inserted	

Stacks: removal of values

16	

stack	
boRom	

stack	
top	

5	
17	
33	

43	

	

				5				17				33				9				43	
	
	
Removing	values	from	
the	stack:	
	

				43	

order	in	which	values	were	inserted	

9	

Stacks: removal of values

17	

stack	
boRom	

stack	
top	

5	
17	

43	

	

				5				17				33				9				43	
	
	
Removing	values	from	
the	stack:	
	

				43				9	

order	in	which	values	were	inserted	

9	
33	

Stacks: removal of values

18	

stack	
boRom	

stack	
top	

5	

43	

	

				5				17				33				9				43	
	
	
Removing	values	from	
the	stack:	
	

				43				9				33	

order	in	which	values	were	inserted	

9	
33	
17	

Stacks: removal of values

19	

stack	
boRom	

stack	
top	

43	

	

				5				17				33				9				43	
	
	
Removing	values	from	
the	stack:	
	

				43				9				33				17	

order	in	which	values	were	inserted	

9	
33	
17	
5	

Stacks: removal of values

20	

stack	
boRom	

stack	
top	

5	

43	

	

				5				17				33				9				43	
	
	
Removing	values	from	
the	stack:	
	

				43				9				33				17				5	

order	in	which	values	were	inserted	

9	
33	
17	

None	

None	

Stacks: removal of values

21	

	

				5				17				33				9				43	
	
	
Removing	values	from	
the	stack:	
	

				43				9				33				17				5	

order	in	which	values	were	inserted	

order	in	which	values	were	removed	

Stacks: LIFO property

22	

	

				5				17				33				9				43	
	
	
Removing	values	from	
the	stack:	
	

				43				9				33				17				5	

order	in	which	values	were	inserted	

order	in	which	values	were	removed	

values	are	removed	in	
reverse	order	from	the	
order	of	inser6on	

"LIFO	order"		
Last	in,	First	out	

Methods for a Stack class
•  Stack()	:	creates	a	new	empty	stack	

	

• push(item)	:	adds	item	to	the	top	of	the	stack	
‒ returns	nothing	
‒ modifies	the	stack	

	

• pop()	:	removes	the	top	item	from	the	stack		
‒ returns	the	removed	item	
‒ modifies	the	stack	

	

•  is_empty()	:	checks	whether	the	stack	is	empty	
‒ returns	a	Boolean	

23	

Implementing a Stack class
class	Stack:	
						#	the	top	of	the	stack	is	the	last	item	in	the	list	
						def	_	_init_	_(self):	
												self._items	=	[]	
	

						def	push(self,	item):	
												self._items.append(item)	
	

						def	pop(self):	
												return	self._items.pop()	

24	

removes	and	returns		
the	last	item	in	a	list	

EXERCISE
>>>	s	=	Stack()	
>>>	s.push(4)	
>>>	s.push(17)	
>>>	s.push(5)	
>>>	x	=	s.pop()	
>>>	y	=	s.pop()	
	

25	

←	what	does	the	stack	s	look	like	here?	
what	are	the	values	of	x	and	y?	

EXERCISE
>>>	s	=	Stack()	
>>>	s.push(4)	
>>>	s.push(17)	
>>>	s.push(5)	
>>>	x	=	s.pop()	
>>>	y	=	s.pop()	
>>>	s.push(x)	
>>>	s.push(y)	
	
	

26	

←	what	does	the	stack	s	look	like	here?	

stacks: applications

27	

An application: balancing parens

28	

IDLE	(the	Python	shell)	matches	up	led	and	right	
parens	(),	brackets	[],	and	braces	{	}	

How	does	it	figure	out	how	far	back	to	highlight?	

An application: balancing parens
Basic	idea:	Match	each]	with	corresponding	[

‒ similarly	for	(…)	and	{	…	}	pairs	
	

‒  Idea:	
o maintain	a	stack	
o  on	seeing	'['	:	push	
o  on	seeing	']'	:	pop	the	matching	symbol	
	
			Example:			[1,	2,	[3,	[4],	5	,	[7]]]	

29	

Stack	 (empty)	

An application: balancing parens
Basic	idea:	Match	each]	with	corresponding	[

‒ similarly	for	(…)	and	{	…	}	pairs	
	

‒  Idea:	
o maintain	a	stack	
o  on	seeing	'['	:	push	
o  on	seeing	']'	:	pop	the	matching	symbol	
	
			Example:			[1,	2,	[3,	[4],	5	,	[7]]]	

30	

[

Stack	

â	
ß	top	

push	

An application: balancing parens
Basic	idea:	Match	each]	with	corresponding	[

‒ similarly	for	(…)	and	{	…	}	pairs	
	

‒  Idea:	
o maintain	a	stack	
o  on	seeing	'['	:	push	
o  on	seeing	']'	:	pop	the	matching	symbol	
	
			Example:			[1,	2,	[3,	[4],	5	,	[7]]]	

31	

[

[
â	

Stack	

[

ß	top	

ß	top	

push	

An application: balancing parens
Basic	idea:	Match	each]	with	corresponding	[

‒ similarly	for	(…)	and	{	…	}	pairs	
	

‒  Idea:	
o maintain	a	stack	
o  on	seeing	'['	:	push	
o  on	seeing	']'	:	pop	the	matching	symbol	
	
			Example:			[1,	2,	[3,	[4],	5	,	[7]]]	

32	

[

[
â	

Stack	

[

[

[

[

ß	top	

ß	top	

push	

An application: balancing parens
Basic	idea:	Match	each]	with	corresponding	[

‒ similarly	for	(…)	and	{	…	}	pairs	
	

‒  Idea:	
o maintain	a	stack	
o  on	seeing	'['	:	push	
o  on	seeing	']'	:	pop	the	matching	symbol	
	
			Example:			[1,	2,	[3,	[4],	5	,	[7]]]	

33	

[

[
â	

Stack	

[

[

[

[

ß	top	

matches:	
pop	

An application: balancing parens
Basic	idea:	Match	each]	with	corresponding	[

‒ similarly	for	(…)	and	{	…	}	pairs	
	

‒  Idea:	
o maintain	a	stack	
o  on	seeing	'['	:	push	
o  on	seeing	']'	:	pop	the	matching	symbol	
	
			Example:			[1,	2,	[3,	[4],	5	,	[7]]]	

34	

[

[
â	

Stack	

[

[

[

[

ß	top	

An application: balancing parens
Basic	idea:	Match	each]	with	corresponding	[

‒ similarly	for	(…)	and	{	…	}	pairs	
	

‒  Idea:	
o maintain	a	stack	
o  on	seeing	'['	:	push	
o  on	seeing	']'	:	pop	the	matching	symbol	
	
			Example:			[1,	2,	[3,	[4],	5	,	[7]]]	

35	

[

[
â	

Stack	

[

[

[

[

ß	top	

ß	top	

push	

An application: balancing parens
Basic	idea:	Match	each]	with	corresponding	[

‒ similarly	for	(…)	and	{	…	}	pairs	
	

‒  Idea:	
o maintain	a	stack	
o  on	seeing	'['	:	push	
o  on	seeing	']'	:	pop	the	matching	symbol	
	
			Example:			[1,	2,	[3,	[4],	5	,	[7]]]	

36	

[

[
â	

Stack	

[

[

[

[

ß	top	

ß	top	

matches:	
pop	

An application: balancing parens
Basic	idea:	Match	each]	with	corresponding	[

‒ similarly	for	(…)	and	{	…	}	pairs	
	

‒  Idea:	
o maintain	a	stack	
o  on	seeing	'['	:	push	
o  on	seeing	']'	:	pop	the	matching	symbol	
	
			Example:			[1,	2,	[3,	[4],	5	,	[7]]]	

37	

[

[
â	

Stack	

[

[

[

[

ß	top	

An application: balancing parens
Basic	idea:	Match	each]	with	corresponding	[

‒ similarly	for	(…)	and	{	…	}	pairs	
	

‒  Idea:	
o maintain	a	stack	
o  on	seeing	'['	:	push	
o  on	seeing	']'	:	pop	the	matching	symbol	
	
			Example:			[1,	2,	[3,	[4],	5	,	[7]]]	

38	

[

[

â	

Stack	

[

[

[

[

ß	top	

matches:	
pop	

An application: balancing parens
Basic	idea:	Match	each]	with	corresponding	[

‒ similarly	for	(…)	and	{	…	}	pairs	
	

‒  Idea:	
o maintain	a	stack	
o  on	seeing	'['	:	push	
o  on	seeing	']'	:	pop	the	matching	symbol	
	
			Example:			[1,	2,	[3,	[4],	5	,	[7]]]	

39	

[

[

â	

Stack	

[

[

[

[ß	top	

An application: balancing parens
Basic	idea:	Match	each]	with	corresponding	[

‒ similarly	for	(…)	and	{	…	}	pairs	
	

‒  Idea:	
o maintain	a	stack	
o  on	seeing	'['	:	push	
o  on	seeing	']'	:	pop	the	matching	symbol	
	
			Example:			[1,	2,	[3,	[4],	5	,	[7]]]	

	
Elabora6on:	Have	each	stack	element	keep	
track	of	the	posi6on	of	its	[

40	

[

[

Stack	

[

[

[

[ß	top	

EXERCISE

41	

Write	a	func*on		balanced(s)
that	returns	True	if	the	string	s	is	
balanced	with	respect	to	‘[‘	and	’]’	
and	False	otherwise.		
	
	

class	Stack:	
						def	_	_init_	_(self):	
												self._items	=	[]	
	

						def	push(self,	item):	
												self._items.append(item)	
						def	pop(self):	
												return	self._items.pop()	
						def	is_empty():	
												return	self._items	==	[]	
	
	
	

Related: Displaying web pages
Web	page	

42	

Related: Displaying web pages
Web	page	 Display	considera5ons	

43	

main	header:	large	font,	bold	

secondary	header:	medium	font,	bold	

italics	font	

bold	font	

Ques5on:	how	does	
the	web	browser	figure	
out	how	much	a	given	
display	format	should	
include?			
E.g.,	which	text	is	in	
boldface,	how	much	is	in	
italics,	etc.	

Related: Displaying web pages
Web	page	 HTML	source	

44	

Related: Displaying web pages
Web	page	 HTML	source	

45	

Related: Displaying web pages
Web	page	 HTML	source	

46	

Related: Displaying web pages
HTML	source	

47	

"tags"	

<h1>	:	"open	header	1"	
</h1>	:	"close	header	1"	
<h2>	:	"open	header	2"	
</h2>	:	"close	header	2"	
<i>	:	"open	italics"	
</i>	:	"close	italics"	

…	

Related: Displaying web pages
Web	page	 HTML	source	

48	

Figuring	out	how	to	display	different	parts	of	
the	web	page	requires	matching	up	“open-”	
and	“close-”	HTML	tags.		This	is	essen6ally	the	
same	problem	as	balancing	parens.		

EXERCISE
>>>	s1	=	Stack()	
>>>	s1.push(4)	
>>>	s1.push(17)	
>>>	s2	=	Stack()	
>>>	s2.push(s1.pop())	
>>>	s2.push(s1.pop())	
>>>	s1.push(s2.pop())	
>>>	s1.push(s2.pop())	
	
	

49	

←	what	does	the	stack	s1	look	like	here?	

Abstract Data Types

50	

Abstract Data Types
An	abstract	data	type	(ADT)	describes	a	set	of	data	
values	and	associated	opera6ons	that	are	specified	
independent	of	any	par6cular	implementa6on.	
	
An	ADT	is	a	logical	descrip6on	of	how	we	view	the	
data	and	the	opera6ons	allowed	on	that	data.	

o describes	what		the	data	represents	
o not	how	is	the	data	represented	

The	data	is	encapsulated.	

51	

Abstract Data Types
	
Because	the	data	is	encapsulated	we	can	change	the	
underlying	implementa6on	without	affec6ng	the	
way	the	ADT	behaves.	

o the	logical	descrip6on	remains	the	same	
o the	opera6ons	remain	the	same	

52	

EXERCISE

53	

Hypothe*cal:	Python	7	has	just	been	released	
and	built-in	lists	are	inefficient.	In	fact,	all	
opera*ons	are	O(n2).	
	
Avoid	these	inefficiencies	by	implemen*ng	the	
Stack	class	using	LinkedLists.	
	

queues

54	

A Queue ADT
A	queue	is	a	linear	data	structure	where	inser6ons	
and	dele6ons	happen	at	different	ends	

‒  inser6ons	happen	at	one	end	(the	queue's	"back“,	or	
“tail”)	

‒ dele6ons	happen	at	the	other	end	(the	queue's	"front“,	
or	“head”)	

55	

dele6ons	
occur	at	
this	end	
(head)	

inser6ons	
occur	at	
this	end	

(tail)	

Queues: insertion of values
Inser6on	of	a	sequence	
of	values	into	a	queue:	

56	

None	None	
queue	
back	

queue	
front	

5				17				33				9				43	

Queues: insertion of values

57	

queue	
back	

queue	
front	

5	

Inser6on	of	a	sequence	
of	values	into	a	queue:	 5				17				33				9				43	

Queues: insertion of values

58	

queue	
back	

queue	
front	

17	 5	

Inser6on	of	a	sequence	
of	values	into	a	queue:	 5				17				33				9				43	

Queues: insertion of values

59	

queue	
back	

queue	
front	

33	 17	 5	

Inser6on	of	a	sequence	
of	values	into	a	queue:	 5				17				33				9				43	

Queues: insertion of values

60	

queue	
back	

queue	
front	

9	 33	 17	 5	

Inser6on	of	a	sequence	
of	values	into	a	queue:	 5				17				33				9				43	

Queues: insertion of values

61	

queue	
back	

queue	
front	

43	 9	 33	 17	 5	

Inser6on	of	a	sequence	
of	values	into	a	queue:	 5				17				33				9				43	

5				17				33				9				43	

Queues: insertion of values

62	

queue	
back	

queue	
front	

43	 9	 33	 17	 5	

order	of	inser*on	

5				17				33				9				43	

Queues: removal of values

63	

queue	
back	

queue	
front	

43	 9	 33	 17	 5	

order	of	inser*on	

Removing	values	
from	this	queue:	

5				17				33				9				43	

Queues: removal of values

64	

queue	
back	

queue	
front	

43	 9	 33	 5	

order	of	inser*on	

Removing	values	
from	this	queue:	 5	

17	

5				17				33				9				43	

Queues: removal of values

65	

queue	
back	

queue	
front	

43	 9	 17	 5	

order	of	inser*on	

Removing	values	
from	this	queue:	 5				17	

33	

5				17				33				9				43	

Queues: removal of values

66	

queue	
back	

queue	
front	

43	 33	 17	 5	

order	of	inser*on	

Removing	values	
from	this	queue:	 5				17				33	

9	

5				17				33				9				43	

Queues: removal of values

67	

queue	
back	

queue	
front	

9	 33	 17	 5	

order	of	inser*on	

Removing	values	
from	this	queue:	 5				17				33				9				

43	

5				17				33				9				43	

Queues: removal of values

68	

queue	
back	

queue	
front	

43	 9	 33	 17	 5	

order	of	inser*on	

Removing	values	
from	this	queue:	 5				17				33				9				43	

None	None	

Queues: removal of values

69	

5				17				33				9				43	

order	of	inser*on	

5				17				33				9				43	
order	of	removal	

5				17				33				9				43	

Queues: FIFO property

70	

order	of	inser*on	

5				17				33				9				43	
order	of	removal	

values	are	removed	in	
order	in	which	they	are	
inserted	

"FIFO	order"		
First	in,	First	out	

Methods for a queue class
•  Queue():	creates	a	new	empty	queue	
•  enqueue(item):	adds	item	to	the	back	of	the	queue	

‒ modifies	the	queue	
‒  returns	nothing	

•  dequeue():	removes	and	returns	the	item	at	the	front	
of	the	queue	
‒  returns	the	removed	item	
‒ modifies	the	queue	

•  is_empty():	checks	whether	the	queue	is	empty	
‒  returns	a	Boolean	

•  size():	returns	the	size	of	the	queue	
‒  returns	an	integer	

71	

Implementing a queue class
• Use	a	built-in	list	for	the	internal	representa6on	

‒ Python	lists	can	be	added	at	to	the	front	or	at	the	end	
•  First	implementa6on:	

‒  the	head	is	the	0th	element	
‒  the	tail	is	the	nth	element	

•  Second	implementa6on	
‒  the	head	is	the	nth	element	
‒  the	tail	is	the	0th	element	

72	

Implementing a Queue class I
class	Queue:	
						#	the	front	of	the	queue	is	the	first	item	in	the	list	
						def	_	_init_	_(self):	
												self._items	=	[]	
	

						def	enqueue(self,	item):	
												self._items.append(item)	
	

						def	dequeue(self):	
												return	self._items.pop(0)	

73	

removes	and	
returns	item	0	
from	the	list	

0	 1	 2	 3	 4	 5	

�
	

head	

�
	

tail	

Implementing a Queue class II
class	Queue:	
						#	the	front	of	the	queue	is	the	last	item	in	the	list	
						def	_	_init_	_(self):	
												self._items	=	[]	
	

						def	enqueue(self,	item):	
												self._items.insert(0,	item)	
	

						def	dequeue(self):	
												return	self._items.pop()	

74	

removes	and	
returns	the	last	
item	in	the	list	

0	 1	 2	 3	 4	 5	�
	

tail	

�
	

head	

EXERCISE
>>>	q	=	Queue()	
>>>	q.enqueue(4)	
>>>	q.enqueue(17)	
>>>	x	=	q.dequeue()	
>>>	q.enqueue(5)	
>>>	y	=	q.dequeue()	
	
	

75	

←	what	are	the	values	of	x	and	y?	

EXERCISE
>>>	q	=	Queue()	
>>>	q.enqueue(4)	
>>>	q.enqueue(17)	
>>>	x	=	q.dequeue()	
>>>	y	=	q.dequeue()	
>>>	q.enqueue(y)	
>>>	q.enqueue(x)	
>>>	q.enqueue(y)	
	
	
	
	

76	

←	what	does	the	queue	q	look	like	here?	

queues: applications

77	

Application 1: Simulation
•  Typical	applica6ons	simulate	problems	that	require	
data	to	be	managed	in	a	FIFO	manner	
‒ Hot	potato		

o  Kids	stand	in	a	circle	and	pass	a	“hot	potato”	around	un6l	told	
to	stop.	The	person	holding	the	potato	is	taken	out	of	the	
circle.	The	process	is	repeated	un6l	only	one	person	remains.	

‒ Generalized:	Given	n	elements,	eliminate	every	kth	
element	repeatedly	un6l	only	1	element	is	led.	What	
was	the	original	posi6on	of	the	remaining	element?	

	

• Use	a		simula*on	to	determine	which	element	
remains.		

78	

EXERCISE
Problem:	Given	n	elements,	eliminate	every	kth	
element	repeatedly	un6l	only	1	element	is	led.	What	
was	the	original	posi6on	of	the	remaining	element?	
			use	a	queue	to	simulate	the	circle	
			n	is	the	number	of	elements	to	put	into	the	queue	
			while	there	is	more	than	one	element	in	the	queue	
										eliminate	every	kth	element	

												
What	opera6ons	take	an	element	from	the	front	of	
the	queue	and	place	it	at	the	back	of	the	queue?	
	

	

	
79	

General solution for k=2
•  Given	n	elements,	eliminate	every	kth	element	repeatedly	un6l	only	1	element	
is	led.	What	was	the	original	posi6on	of	the	remaining	element?	

•  When	k	=	2,	the	original	posi6on	can	be	derived	from	the	binary	representa6on	
of	n.	

													Take	the	first	digit	of	the	binary	representa6on.	
													Move	it	to	the	end	
													The	result	is	the	original	posi6on.	
				Ex:	n	=	41,	k=2	
													In	binary	
																				n	=	101001	
													Therefore,	the	original	posi6on	(in	binary)	is	
																				010011		
														and	010011	=	24	+	21	+	20	=		19	
	
hRps://en.wikipedia.org/wiki/Josephus_problem#CITEREFDowdyMays1989	
	

80	

Application 2 : Simulation
•  Suppose	we	are	opening	a	grocery	store.		How	
many	checkout	lines	should	we	put	in?	
‒  too	few	⇒	long	wait	6mes,	unhappy	customers	
‒  too	many	⇒	wasted	money,	space	

	

• Use	simula*ons	of	the	checkout	process	to	guide	
the	decision	
‒ study	exis6ng	stores	to	figure	out	typical	shopping	and	
checkout	6mes	

‒ es6mate	no.	of	customers	expected	at	the	new	loca6on	
‒ run	simula6ons	to	determine	customer	wait	6me	and	
checkout	line	u6liza6on	under	different	scenarios	

81	

Discrete event simulation

82	

…	

queue	

…
	

arrivals	departures	

arrival	rate	
distribu6on	

departure	rate	
distribu6on	

servers	

customers	By	varying	the	parameters	of	the	
simula6on	(arrival	and	departure	
rates,	no.	of	servers)	we	can	try	
out	different	scenarios	

Summary
•  Stacks	and	queues	are	abstract	data	types	(ADTs)	

‒ similar	in	that	they	are	both	linear	data	structures	
‒  items	can	be	thought	of	as	arranged	in	a	line	
‒ each	item	has	a	posi6on	and	a	before/ader	rela6onship	
with	the	other	items	

•  They	differ	in	the	way	items	are	added	and	removed	
‒ stacks:	items	added	and	removed	at	one	end	

o  results	in	LIFO	behavior	
‒ queues:	items	added	at	one	end,	removed	at	the	other	

o  results	in	FIFO	behavior	

•  They	find	a	wide	range	of	applica6ons	in	computer	
science	

83	

A Deque ADT

A	deque	is	a	linear	data	structure	where	inser6ons	
and	dele6ons	happen	at	both	ends	

84	

inser6ons	
and	
dele6ons	
occur	at	
this	end	
(head)	

inser6ons
and	
dele6ons	
occur	at	
this	end	

(tail)	

