CSc 120

Introduction to Computer Programming
]

Adapted from slides
by Dr. Saumya Debray

14: Stacks and Queues

liInear data structures

Linear data structures

A linear data structure is a collection of objects with
a straight-line ordering among them
— each object in the collection has a position

— for each object in the collection, there is a notion of the
object before it or after it

00000

Data structures we've seen

* Python lists (aka arrays) e Dictionaries
e Linked lists * Sets

Today's

topic

* Python lists
* Linked lists
* Stacks

* Queues

(aka arrays) e Dictionaries

* Dequeues

* Sets

Key property: the way in which
objects are added to, and
removed from, the collection

stacks

Stacks

A stack is a linear data structure where objects are
inserted or removed only at one end

— all insertions and deletions happen at one particular end
of the data structure

— this end is called the top of the stack
— the other end is called the bottom of the stack

00000

13

insertions and deletions
happen at one end

Stacks: insertion of values

Insertion of a sequence
of values into a stack:

5 17 33 9 43

stack

top NONE

stack
bottom None

Stacks: insertion of values

Insertion of a sequence
of values into a stack:

(5] 17 33 9 43

stack

) ¥
stack
bottom 5

Stacks: insertion of values

Insertion of a sequence
of values into a stack:

17) 33 9 43

17

10

Stacks: insertion of values

Insertion of a sequence
of values into a stack:

33 9 43

stack__—Y

top

stack
bottom

Stacks: insertion of values

Insertion of a sequence
of values into a stack:

(9] 43

9
stack/ 33

top
17

stack — 5
bottom

Stacks: insertion of values

Insertion of a sequence
of values into a stack:

43
9
stack 33
top
17
stack
bottom\b 5

Stacks: insertion of values

5 17 33 9 43
>

order in which values were inserted

stack
top

stack
bottom

43

33

17

14

Stacks: removal of values

5 17 33 9 43
>

order in which values were inserted

: 43
Removmg values from
the stack: S
stack 33
top
17
stack
bottom\b 5

Stacks: removal of values

5 17 33 9 43
>

order in which values were inserted

Removing values from

the stack: 9
stack/ 33

43 top
17

stack — 5
bottom

16

Stacks: removal of values

5 17 33 9 43
>

order in which values were inserted

Removing values from
the stack:

stack
43 9 o —

stack
bottom

Stacks: removal of values

5 17 33 9 43

order in which values were inserted

Removing values from
the stack:

43 9 33 top \

17

18

Stacks: removal of values

5 17 33 9 43

order in which values were inserted

Removing values from
the stack:

43 9 33 17 top\
E—

19

Stacks: removal of values

5 17 33 9 43

order in which values were inserted

Removing values from
the stack:

stack

43 9 33 17 5 op NONE

stack

bottom None

20

Stacks: removal of values

5 17 33 9 43
>

order in which values were inserted

Removing values from
the stack:

43 9 33 17 5
>

order in which values were removed

21

Stacks: LIFO property

-

5 17 33 9 43
>

order in which values were inserted

values are removed in
Removing values from - reverse order from the

the stack: order of insertion

43 9 33 17.5 "LIFO order"

order in which values were removed _ Last in, First out

22

Methods for a Stack class

 Stack() : creates a new empty stack

e push(item) : adds item to the top of the stack

— returns nothing
— modifies the stack

* pop() : removes the top item from the stack
— returns the removed item
— modifies the stack

* is_empty() : checks whether the stack is empty
— returns a Boolean

23

Implementing a Stack class

class Stack:
the top of the stack is the last item in the list
def _init_ (self):

self. items =]

def push(self, item):

self. items.append(item)
removes and returns

def pop(self): / the last item in a list

return self._items.pop()

24

EXERCISE

>>> s = Stack()
>>> s.push(4)
>>>s.push(17)
>>> s.push(5)

>>> X = s.pop()

>>>y =s.pop()
& what does the stack s look like here?
what are the values of x and y?

25

>>>S.puUs
>>> S.puUs
>>> 5.pUS

EXERCISE

>>> s = Stack()

n(4)
N(17)

N(5)

>>> X = s.pop()

>>>y =s.pop()
>>> s.push(x)

>>> s.push(y)

& what does the stack s look like here?

26

stacks: applications

An application: balancing parens

IDLE (the Python shell) matches up left and right
parens (), brackets [], and braces { }

How does it figure out how far back to highlight?

28

An application: balancing parens

Basic idea: Match each | with corresponding |
—similarly for (...) and { ... } pairs

— |dea:
o maintain a stack
o onseeing'[': push
o on seeing ']' : pop the matching symbol

Example: [1,2,[3,[41,5,[711]

Stack (empty)

29

An application: balancing parens

Basic idea: Match each | with corresponding |
—similarly for (...) and { ... } pairs

— |dea:
o maintain a stack
o onseeing'[': push
o on seeing ']' : pop the matching symbol

Example: 61,2,[3,[4],5,[7]]] [| < top
\\\\\\\\\\‘____,,/////////////”/’%> Stack

push

30

An application: balancing parens

Basic idea: Match each | with corresponding |
—similarly for (...) and { ... } pairs

— |dea:
o maintain a stack
o onseeing'[': push
o on seeing ']' : pop the matching symbol

[< top
Example: [1,2,([3,[41,5,[7]1]] [| €top
Stack

push

31

An application: balancing parens

Basic idea: Match each | with corresponding |
—similarly for (...) and { ... } pairs

— ldea:
o maintain a stack
o onseeing'[': push

o on seeing ']' : pop the matching symbol [< top
[< top
Example: [1,2,[3,[14],5,[7]1]] [
Stack

push

32

An application: balancing parens

Basic idea: Match each | with corresponding |

—similarly for (...) and { ... } pairs

— |dea:
o maintain a stack
o onseeing'[': push
o on seeing ']' : pop the matching symbol

Example: [1,2,[3,[4Z55,[7]]]

matches:
pop

[< top

33

An application: balancing parens

Basic idea: Match each | with corresponding |
—similarly for (...) and { ... } pairs

— |dea:
o maintain a stack
o onseeing'[': push
o on seeing ']' : pop the matching symbol

[< top
Example: [1,2,[3,[4])5,[7]]] [

Stack

34

An application: balancing parens

Basic idea: Match each | with corresponding |
—similarly for (...) and { ... } pairs

— ldea:
o maintain a stack
o onseeing'[': push

o on seeing ']' : pop the matching symbol [< top
[< top
Example: [1,2,[3,[4],5, [
Stack

35

An application: balancing parens

Basic idea: Match each | with corresponding |
—similarly for (...) and { ... } pairs

— ldea:
o maintain a stack
o onseeing'[': push

o on seeing ']' : pop the matching symbol [< top
[< top
Example: [1,2,[3,[41,5,[7(1]] [
matches: Stack

pop

36

An application: balancing parens

Basic idea: Match each | with corresponding |
—similarly for (...) and { ... } pairs

— |dea:
o maintain a stack
o onseeing'[': push
o on seeing ']' : pop the matching symbol

[< top
Example: [1,2,[3,[41,5,[7]1]] [

Stack

37

An application: balancing parens

Basic idea: Match each | with corresponding |
—similarly for (...) and { ... } pairs

— |dea:
o maintain a stack
o onseeing'[': push
o on seeing ']' : pop the matching symbol

[< top
Example: [1,2,[3,[41,5,[7] L/ [

matches: Stack
pop

An application: balancing parens

Basic idea: Match each | with corresponding |
—similarly for (...) and { ... } pairs

— |dea:
o maintain a stack
o onseeing'[': push
o on seeing ']' : pop the matching symbol

Example: [1,2,[3,[4],5,[7]35] [& top

Stack

39

An application: balancing parens

Basic idea: Match each | with corresponding |
—similarly for (...) and { ... } pairs

— |dea:
o maintain a stack
o onseeing'[': push
o on seeing ']' : pop the matching symbol

Example: [1 2,[3,[41,5,[7]]]

— [< top
S _—— Stack

Elaboration: Have each stack element keep
track of the position of its |

40

EXERCISE

Write a function balanced (s)
that returns True if the string s is
class Stack: : (e 1
balanced with respect to ‘[“and ’]

def __init__(self): and False otherwise.

7

self. items =]

def push(self, item):
self._items.append(item)

def pop(self):
return self._items.pop()

def is_empty():
return self. _items == [] .

Related: Displaying web pages

Web page

THE UNIVERSITY OF ARIZONA,
DEPARTMENT OF COMPUTER SCIENCH
CSc 120: Phylogenetic Trees

This problem brings together many different programmin
and trees. It is one of the most technically challenging pr

Background

An evolutionary tree (also called a phylogenetic tree) is a

This program involves writing code to construct phylogen|
example, since programs are sequences of characters, w¢

Expected Behavior

Write a Python program, in a file phylo.py, that behaves

1. Read in the input parameters:
o Read in the name of an input file using input
o Read in an integer value N using input('n-gr

2. Read in the input file. The file format is specified un

42

Related: Displaying web pages

Web page Display considerations
THE UNIVERSITY OF ARIZONA,
DEPARTMENT OF COMPUTER SCIENCE/ main header: large font, bold
A

CSc 120: Phylogenetic Trees

This problem brings together many different programmin
and trees. It is one of the most technically challenging pr

Background — secondary header: medium font, bold

An evolutionary tree (also called a phylogenetic treefis a ﬁluesﬁon' hOW dOGS \
This program involves writing code to constfuct phylogen| the Web browser ﬁgure

example, since programs are sequences of characters, w¢ b
old font :
| out how much a given

Expected Behavior .
P _‘/ display format should
Write a Python program, in a fil ph:w_ — jtalics font include?
1{ Read in the input parameter: 'inpu e Toput E.g., which text is in
o Read in an integer v using input('n-gr boldface, how much is in

. Read in the input file|The file format is specified un walics, etc. /

N

43

Related: Displaying web pages

Web page

THE UNIVERSITY OF ARIZONA,
DEPARTMENT OF COMPUTER SCIENCH
CSc 120: Phylogenetic Trees

This problem brings together many different programmin
and trees. It is one of the most technically challenging pr

Background

An evolutionary tree (also called a phylogenetic tree) is a

This program involves writing code to construct phylogen|
example, since programs are sequences of characters, w¢

Expected Behavior

Write a Python program, in a file phylo.py, that behaves

1. Read in the input parameters:
o Read in the name of an input file using input
o Read in an integer value N using input('n-gr

2. Read in the input file. The file format is specified un

HTML source

</head>

<body bgcolor="white">

<p>

<img src="../../IMGS/uadcs.gif" alt="University of Arizona, Depa
</p>

<h1>CSc 120: Phylogenetic Trees</hl>

This problem brings together many different programming construc
techniques we covered over the course of the semester including:
manipulation, (Python) lists, dictionaries, tuples, classes,
list comprehensions, and trees. It is one of the most
technically challenging programs assigned in this class this sen|
think it's also one of the most interesting.

<h2>Background</h2>

An <a href="http://evolution.berkeley.edu/evolibrary/article/phy|
evolutionary tree (also called a

<a href="https://en.wikipedia.org/wiki/Phylogenetic_tree"
target="_blank">phylogenetic tree) is a tree that express

evolutionary relationships between a set of organisms.

<p/>

This program involves writing code to construct phylogenetic tre

the genome sequences of a set of organisms. (O0f course, there i

inherently genetic about the techniques we use and the code we w

example, since programs are sequences of characters, we could ju

apply this approach to sets of programs.)

<h2>Expected Behavior</h2>
Write a Python program, in a file <tt>phylo.py</tt>, that
behaves as specified below.
<p/>

<i>Read in the input parameters</i>:

44

Related: Displaying web pages

Web page

THE UNIVERSITY OF ARIZONA,
DEPARTMENT OF COMPUTER SCIENCE

ZCSc 120: Phylogenetic Trees]

This problem brings together many different programmin
and trees. It is one of the most technically challenging pr

ZBackground]

An evolutionary tree (also called a phylogenetic tree) is a

This program involves writing code to construct phylogen|
example, since programs are sequences of characters, w¢

iExpected Behavior

Write a Python program, in a file phylo.py, that behaves

ll Read in the input parameters:!/_\
i nput file using inpu

o Read in an integer value N using input('n-gr

2. Read in the input file. The file format is specified un

HTML source

</head>

<body bgcolor="white">

<p>

<img src="../../IMGS/uadcs.gif" alt="University of Arizona, Depal
</p>

<h14t5c 120: Phylogenetic Tree4</h1>

This problem brings together many different programming construc
techniques we covered over the course of the semester including:
manipulation, (Python) lists, dictionaries, tuples, classes,
list comprehensions, and trees. It is one of the most
technically challenging programs assigned in this class this sen|
think it's also one of the most interesting.

<h23Background¢/h2>

An = p://evolution.berkeley.edu/evolibrary/article/phy
evolutionary tree (also called a

<a href="https://en.wikipedia.org/wiki/Phylogenetic_tree"
target="_blank">phylogenetic tree) is a tree that express

evolutionary relationships between a set of organisms.

<p/>

This program involves writing code to construct phylogenetic tre

the genome sequences of a set of organisms. (O0f course, there i

inherently genetic about the techniques we use and the code we W

example, since programs are sequences of characters, we could jui

apply this approach to sets of programs.)

<h2%Expected Behavior}/h2>
Write a Python program, in a file <tt>phylo.py</tt>, that

behaves as specified below.
<p/>

i

\\\\-ziiRead in the input parameter4</i>:

45

Related: Displaying web pages

Web page

THE UNIVERSITY OF ARIZONA,
DEPARTMENT OF COMPUTER SCIENCH
CSc 120: Phylogenetic Trees

This problem brings together many different programmin
and trees. It is one of the most technically challenging pr

Background

An evolutionary tree (also called a phylogenetic tree) is a

This program involves writing code to construct phylogen|
example, since programs are sequences of characters, w¢

Expected Behavior

Write a Python program, in a file phylo.py, that behaves

1. Read in the input parameters:
o Read in the name of an input file using input
o Read in an integer value N using input('n-gr

2. Read in the input file. The file format is specified un

HTML source

</head>

<body bgcolor="white">

<p>

<img src="../../IMGS/uadcs.gif" alt="University of Arizona, Depa

</p>
CSc 120: Phylogenetic Trees

This problem brings together many different programming construc
techniques we covered over the course of the semester including:
manipulation, (Python) lists, dictionaries, tuples, classes,
list comprehensions, and trees. It is one of the most
technically challenging programs assigned in this class this sen|
think it's also one of the most interesting.

<h2}Background ‘
<a href="http:77/evolution.berkeley.edu/evolibrary/article/ph

evolutionary tree (also called a
<a href="https://en.wikipedia.org/wiki/Phylogenetic_tree"
target="_blank">phylogenetic tree) is a tree that express
evolutionary relationships between a set of organisms.
<p/>
This program involves writing code to construct phylogenetic tre
the genome sequences of a set of organisms. (O0f course, there i
inherently genetic about the techniques we use and the code we w
example, since programs are sequences of characters, we could ju
apply this approach to sets of programs.)

<h24Expected Behavior: -
Write a Python program; a file <tt>phylo.py</tt>, that]

behaves as specified below.
<p/>

i
<i>Read in the input parameterse</i=|:

—

46

Related: Displaying web pages

lltagsll

<h1>
</h1>
<h2>

</h2>
<[>

'open hea
'close header 1
'open header
'close header
'open italics"
</i>: "close italics"

HTML source

</head>
<body bgcolor="white">

<p>
:ﬁBE‘Schf../../IMGS/uadcs.qif" alt="University of Arizona, Dep3
</p>

CSc 120: Phylo

This problem brings together many different programming construc
De hnlques we covered over the course of the semester including:
ion, (Python) lists, dictionaries, tuples, classes,

It is one of the most

*77evolution.berkeley.edu/evolibrary/article/phy|
utionary tree (also called a
<"https://en.wikipedia.org/wiki/Phylogenetic_tree"

<" blank">phylogenetic tree) is a tree that express
evolutionaky relationships between a set of organisms.

<p/>

<i>Read in the input parameters</i>|:

47

Related: Displaying web pages

Web page

THE UNIVERSITY OF ARIZONA,
DEPARTMENT OF COMPUTER SCIENCH

CSc 120: Phylogenetic Trees

HTML source

</head>

<body bgcolor="white">

<p>

<img src="../../IMGS/uadcs.gif" alt="University of Arizona, Depa

</p
<h1 CSc 120: Phylogenetic Treesq /h1

ThlS problem brings together many different programming construc

This problem brings tor/
and trees. It is one of t

Background

An evolutionary tree (a

This program involves
example, since prograr

Figuring out how to display different parts of |«
the web page requires matching up “open-”
and “close-” HTML tags. This is essentially the
same problem as balancing parens.

f the semester including:
‘4<§5 tuples, classes,
e of the most

in this class this sen

/evolibrary/article/phy|

ylogenetic_tree"
is a tree that express

of organisms.

AT//Astruct phylogenetic tref
Trre—geTome—sequerces—o—o—cr—or—orgarfisms. (0f course, there i

Expected Behavior

Write a Python program, in a file phylo.py, that behaves

1. Read in the input parameters:
o Read in the name of an input file using input
o Read in an integer value N using input('n-gr

2. Read in the input file. The file format is specified un

1nherent1y genetlc about the techniques we use and the code we W
example, since programs are sequences of characters, we could ju
apply this approach to sets of programs.)

Expected Behavior
Write a Python program; a file <tt>phylo.py</tt>, that

behaves as specified below.
<p/>

i
<i>Read in the input parameters</i>|:

—

48

EXERCISE

>>>s]1 = Stack()
>>> s1.push(4)

>>>s1.push(17)
>>> s2 = Stack()

>>>S2.pus
>>>S2.pus
>>>s]l.pus
>>>s]l.pus

n(s1.pop())
n(s1.pop())
n(s2.pop())

N(s2.pop())
& what does the stack sl look like here?

49

Abstract Data Types

Abstract Data Types

An abstract data type (ADT) describes a set of data
values and associated operations that are specified
independent of any particular implementation.

An ADT is a logical description of how we view the
data and the operations allowed on that data.

o describes what the data represents

o not how is the data represented

The data is encapsulated.

51

Abstract Data Types

Because the data is encapsulated we can change the
underlying implementation without affecting the
way the ADT behaves.

o the logical description remains the same

o the operations remain the same

52

EXERCISE

Hypothetical: Python 7 has just been released
and built-in lists are inefficient. In fact, all
operations are O(n?).

Avoid these inefficiencies by implementing the
Stack class using LinkedlLists.

53

queues

A Queue ADT

A gqueue is a linear data structure where insertions
and deletions happen at different ends

— insertions happen at one end (the queue's "back”, or
“tail”)

— deletions happen at the other end (the queue's "front”,
or “head”)

insertions deletions
occur at $ ‘—‘_“ <: occur at
this end this end

(tail) (head)

55

Queues: insertion of values

Insertion pfa sequence ct 17 33 g 43
of values into a queue:

queue queue

back None front None

56

Queues: insertion of values

Insertion of a sequence
5/ 17 33 9 43
of values into a queue:

gueue queue
back front

57

Queues: insertion of values

Insertion of a sequence
17 33 9 43
of values into a queue:

17 5

gueue queue
back front

58

Queues: insertion of values

Insertion of a sequence
. .33 9 43
of values into a queue: -

33 17 5

gueue queue
back front

Queues: insertion of values

Insertion of a sequence @] 43
of values into a queue:

gueue queue
back front

Queues: insertion of values

Insertion of a sequence
of values into a queue:

43 S 33 17 5

gueue queue
back front

61

Queues: insertion of values

order of insertion ———»5 17 33 9 43

43 S 33 17 5

gueue queue
back front

62

Queues: removal of values

order of insertion 5 17 33 9 43

Removing values
from this queue:

43 S 33 17 5

. —

gueue queue
back front

63

Queues: removal of values

order of insertion 5 17 33 9 43

Removing values 5
from this queue:

43 S 33 17

— N

gueue queue
back front

64

Queues: removal of values

order of insertion 5 17 33 9 43

Removipg values 5 17
from this queue:

43 S 33

—

gueue queue
back front

65

Queues: removal of values

order of insertion 5 17 33 9 43

Removipg values 5 17 33
from this queue:

43 9
\ T B

gueue queue
back front

66

Queues: removal of values

order of insertion 5 17 33 9 43

Removipgvalues 5 17 33 9
from this queue:

43
N

gueue queue
back front

67

Queues: removal of values

order of insertion 5 17 33 9 43

Removingvalues o 15 33 g 43
from this queue:

queue queue

back None front None

68

Queues: removal of values

order of insertion ——*»

5 17 33 9 43

5 17 33 9 43

order of removal ——»

69

Queues: FIFO property

order of insertion ——*»

5 17 33 9 43

values are removed in
— order in which they are

5 17 33 9 43 inserted

order of removal ——» "EIEO order”

First in, First out

70

Methods for a queue class

* Queue(): creates a new empty queue

e enqueue(item): adds item to the back of the queue
— modifies the queue
— returns nothing

* dequeue(): removes and returns the item at the front

of the queue
— returns the removed item
— modifies the queue

* is_empty(): checks whether the queue is empty
— returns a Boolean

* size(): returns the size of the queue
— returns an integer

71

Implementing a queue class

e Use a built-in list for the internal representation
— Python lists can be added at to the front or at the end

* First implementation:
— the head is the 0th element
— the tail is the nth element

e Second implementation
— the head is the nth element
— the tail is the 0" element

72

Implementing a Queue class |

class Queue:
the front of the queue is the first item in the list

def __init__(self): 0 1 2 3 4 5
< <
head tail

self. items =]

def enqueue(self, item):

self. items.append(item) removes and

returns item O

def dequeue(self): from the list

return self._items.pop(0)

73

Implementing a Queue class |

class Queue:
the front of the queue is the last item in the list

def __init__(self): 0 1 2 3 4 5
> >
tail head

self. items =]

def enqueue(self, item):

self. items.insert(0, item) removes and

returns the last
def dequeue(self): / item in the list
return self._items.pop()

74

EXERCISE

>>> = Queue()
>>> g.enqueue(4)
>>> g.enqueue(17)
>>> X = g.dequeue()
>>> g.enqueue(5)

>>>y = g.dequeue()

& what are the values of x and y?

75

EXERCISE

>>> = Queue()
>>> g.enqueue(4)
>>> g.enqueue(17)
>>> X = g.dequeue()
>>>y = g.dequeue()
>>> g.enqueue(y)
>>> g.enqueue(x)
>>> g.enqueue(y)

< what does the queue q look like here?

76

gueues: applications

Application 1: Simulation

» Typical applications simulate problems that require
data to be managed in a FIFO manner

— Hot potato

o Kids stand in a circle and pass a “hot potato” around until told
to stop. The person holding the potato is taken out of the
circle. The process is repeated until only one person remains.

— Generalized: Given n elements, eliminate every kth
element repeatedly until only 1 element is left. What
was the original position of the remaining element?

e Use a simulation to determine which element
remains.

78

EXERCISE

Problem: Given n elements, eliminate every kth
element repeatedly until only 1 element is left. What
was the original position of the remaining element?

use a queue to simulate the circle
n is the number of elements to put into the queue
while there is more than one element in the queue

eliminate every kth element

What operations take an element from the front of
the queue and place it at the back of the queue?

79

General solution for k=2

* Given n elements, eliminate every kth element repeatedly until only 1 element
is left. What was the original position of the remaining element?

. V\]{hen k = 2, the original position can be derived from the binary representation
of n.

Take the first digit of the binary representation.
Move it to the end
The result is the original position.
Ex: n=41, k=2
In binary
n=101001

Therefore, the original position (in binary) is
010011
and 010011 =24+21+20= 19

https://en.wikipedia.org/wiki/Josephus problem#CITEREFDowdyMays1989

80

Application 2 : Simulation

* Suppose we are opening a grocery store. How
many checkout lines should we put in?
— too few = long wait times, unhappy customers
— too many = wasted money, space

» Use simulations of the checkout process to guide
the decision

— study existing stores to figure out typical shopping and
checkout times

— estimate no. of customers expected at the new location

— run simulations to determine customer wait time and
checkout line utilization under different scenarios

81

Discrete event simulation

o

A
TN /A

departures «—(— arrivals

<—C‘/ queue \

o

servers X

By varying the parameters of the custo rs
simulation (arrival and departure arrival rate
rates, no. of servers) we can try distribution
out different scenarios

departure rate
distribution

82

Summary

 Stacks and queues are abstract data types (ADTSs)
— similar in that they are both linear data structures
— items can be thought of as arranged in a line

— each item has a position and a before/after relationship
with the other items

* They differ in the way items are added and removed

— stacks: items added and removed at one end
o results in LIFO behavior

— queues: items added at one end, removed at the other
o results in FIFO behavior

* They find a wide range of applications in computer
science

A Deque ADT

A deqgue is a linear data structure where insertions
and deletions happen at both ends

insertions insertions
and and
deletions $ ‘_‘_“ <: deletions
occur at occur at
this end this end
(head)

(tail)

84

