CSc 120
Introduction to Computer Programming II

Adapted from slides by Dr. Saumya Debray

13: Recursion
Volunteers!

• Volunteers needed in front of the class for an activity:
 • Must be able to do simple addition
 (ex: $6 + 10 = 16$)
 • Must be able to speak
How much money is in this cup?

If the cup is not empty:

Take out a coin. Pass the cup to the person on your left and ask them:

“How much money is in this cup?”

When they answer, tell the person on your right the sum of your coin and their answer

(your_answer = your_coin + their_answer)

Else: # the cup is empty:

Answer “zero” to the person on your right.

(your_answer = 0)
Challenge

Can we express that procedure in Python?

Idea:

```python
>>> cup = [5, 10, 1, 5]
>>> how_much_money(cup)
21
```

Write Python code that models the cup passing example.
function: how_much_money

def how_much_money(cup):
 if cup != []:
 return cup[0] + how_much_money(cup[1:])
 else:
 return 0

Usage:
>>> how_much_money([5, 10, 1, 5])
21
Calls and returns

\[
\text{how much money}(\{5, 10, 1, 5\}) \\
| \text{how much money}(\{10, 1, 5\}) \\
| | \text{how much money}(\{1, 5\}) \\
| | | \text{how much money}(\{5\}) \\
| | | | \text{how much money} returned 0 \\
| | | | \text{how much money} returned 5 \\
| | | \text{how much money} returned 6 \\
| \text{how much money} returned 16 \\
\text{how much money} returned 21
\]
Manual expansion of calls

```python
>>> 5 + how_much_money([10, 1, 5])
21
```

```python
>>> 5 + (10 + how_much_money([1,5]))
21
```

```python
>>> 5 + (10 + (1 + how_much_money([5])))
21
```

```python
>>> 5 + (10 + (1 + (5 + how_much_money([]))))
21
```
Recursion

A function is *recursive* if it calls itself:

```python
def how_much_money( ... ):
...
    how_much_money( ... ) ← recursive call
...
```

The call to itself is a *recursive call*
Recursion

• The input over which computation occurs is divided into two cases:
 – *base case* :
 o *do some computation and return the result*
 – *recursive case* :
 o *perform computation that reduces the size of the problem or input*
 o *make a recursive call to do the remainder of the computation*

• *Note*: the recursive call is given a smaller problem to work on
 – e.g., it makes progress towards the base case
def how_much_money(cup):
 if cup != []:
 return cup[0] + how_much_money(cup[1:])
 else:
 return 0
The convention is to handle the base case first.
Problem 1

Write a recursive function to count the number of coins in a cup. *The len function is not allowed.*

Usage:

```python
>>> count_coins([10, 5, 1, 5])
4
```
Solution

def count_coins(cup):
 if cup == []:
 return 0
 else:
 return 1 + count_coins(cup[1:])
def count_coins(cup):
 if cup == []:
 return 0
 else:
 return 1 + count_coins(cup[1:])

base case:
cup == []

recursive case:
cup != []

recursive call is on a smaller value
Problem 2

Write a recursive function to count the number of nickels in a cup.

Usage:

```python
>>> count_nickels([10, 5, 1, 5, 1])
2
```
def count_nickels(cup):
 if cup == []:
 return 0
 else:
 if cup[0] == 5:
 return 1 + count_nickels(cup[1:]), recursive call is on a smaller value
 else:
 return count_nickels(cup[1:])
Problem 3

Write a recursive function to print the numbers from 1 through n, one per line.

Usage:

```python
>>> print_n(6)
1
2
3
4
5
6
```
def print_n(n):
 if n == 0:
 return
 else:
 print_n(n-1)
 print(n)

base case:
 n = 0

recursive case:
 n != 0
recursive call is on a smaller value
Problem 4

Write a recursive function that returns the total length of all the elements of a list of lists (a 2-d list).

Usage:

```python
>>> total_length([[1,2], [8,2,3,4], [2,2,2]])
9
```
Solution

def total_length(alist):
 if alist == []:
 return 0
 else:
 return len(alist[0]) + total_length(alist[1:])

base case:
alist == []

recursive case:
alist != []

recursive call is on a smaller value
EXERCISE

Write a recursive function that implements join.
That is, write a function `join(alist, sep)` that takes a list `alist` and creates a string consisting of every element of `alist` separated by the string `sep`.

Usage:

```python
>>> join([10, 20, 30], "--")
'10--20--30'
```
Recursion

To write a recursive function, figure out:

What values are involved in the computation?
 - these will be the arguments to the recursive function

• *Base case(s)*
 - when to stop the repetition

• *Recursive case(s)*
 - what is the "rest of the computation" - i.e., the *smaller problem* to pass to the recursive call

• Note: the recursive case can be written in many ways. Revisit summing a list.
Versions of sumlist

<table>
<thead>
<tr>
<th>Version 1</th>
</tr>
</thead>
</table>

```python
def sumlist(L):
    if len(L) == 0:
        return 0
    else:
        return L[0] + sumlist(L[1:])
```

- The current position in `L` is simply the head of `L`.
- This adds the current element of `L`.
- The argument to the recursive call is "rest of the list" after `L[0]`, which recurses on a smaller problem.
Versions of sumlist

Version 2
(variation on version 1)

def sumlist(L):
 n = len(L)
 if n == 0:
 return 0
 else:
 return sumlist(L[:n-1]) + L[n-1]

current position in L is the last element of L

argument to recursive call is "rest of the list" up to the last element
(recurses on a smaller problem)
Versions of sumlist

<table>
<thead>
<tr>
<th>Version 2</th>
<th>Version 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(variation on version 1)</td>
<td>("smaller" need not be by just 1)</td>
</tr>
</tbody>
</table>

def sumlist(L):

```python
n = len(L)
if n == 0:
    return 0
else:
    return sumlist(L[:n-1]) + L[n-1]
```

def sumlist(L):

```python
def sumlist(L):
    if len(L) == 0:
        return 0
    elif len(L) == 1:
        return L[0]
    else:
        return sumlist(L[:len(L)//2]) + \  
        sumlist(L[len(L)//2:])
```

- **Version 2** is a variation on version 1, recursively summing the list.
- **Version 3** sums the list more efficiently by dividing the list in half recursively, which is better for parallel execution.

Argument to each recursive call:
- Each recursive call takes half of the current list, recursively solving a smaller problem.
def sumlist(L):
 if len(L) == 0:
 return 0
 elif len(L) == 1:
 return L[0]
 else:
 return sumlist(L[:len(L)//2]) + sumlist(L[len(L)//2:])
recursive sum list

input list

split into two halves

add the halves (recursively)

return the sum of the sums
sumlist: example

\texttt{sumlist([1,3,4,6,8])}
sumlist: example

sumlist([1,3])

sumlist([1,3,4,6,8])

sumlist([4,6,8])
sumlist: example

sumlist([1,3,4,6,8])

sumlist([1,3])

sumlist([1]) sumlist([3])

sumlist([4,6,8])
sumlist: example

\[
\text{sumlist([1,3])} \quad \text{sumlist([4,6,8])}
\]

\[
\text{sumlist([1])} \quad \text{sumlist([3])}
\]

\[
1 \quad 3
\]
sumlist: example

\[
\text{sumlist([1,3])} \rightarrow \text{sumlist([1])} \rightarrow 1 \rightarrow 4 \rightarrow \text{sumlist([3])} \rightarrow 3
\]

\[
\text{sumlist([1,3,4,6,8])} \rightarrow \text{sumlist([4,6,8])}
\]
sumlist: example

sumlist([1,3,4,6,8])

sumlist([1,3]) sumlist([4,6,8])

sumlist([1]) sumlist([3]) sumlist([4])

1 3 4 6 8
sumlist: example

\[
\text{sumlist([1])} \quad \text{sumlist([3])} \quad \text{sumlist([4])} \quad \text{sumlist([6,8])}
\]

\[
\text{sumlist([1,3,4,6,8])} \quad \text{sumlist([4,6,8])}
\]

1 \quad 3 \quad 4 \quad 4
sumlist: example
sumlist: example

sumlist([1,3,4,6,8])

sumlist([1]) -> 1
sumlist([3]) -> 3
sumlist([4]) -> 4
sumlist([6]) -> 6
sumlist([8]) -> 8

sumlist([1,3,4,6,8])

sumlist([1,3])
sumlist([4,6,8])

sumlist([1])
sumlist([3])
sumlist([4])
sumlist([6])
sumlist([8])

sumlist([1,3,4,6,8])
sumlist: example

\[
\text{sumlist([1,3,4,6,8])} \\
\downarrow \\
\text{sumlist([1,3])} \\
\downarrow \\
\text{sumlist([1])} \quad \text{sumlist([3])} \\
\downarrow \quad \downarrow \\
1 \quad 3 \\
\downarrow \quad \downarrow \\
\text{sumlist([4,6,8])} \\
\downarrow \\
\text{sumlist([4])} \\
\downarrow \\
4 \\
\downarrow \\
\text{sumlist([6,8])} \\
\downarrow \\
\text{sumlist([6])} \quad \text{sumlist([8])} \\
\downarrow \quad \downarrow \\
6 \quad 8 \\
\downarrow \quad \downarrow \\
\text{sumlist([1,3,4,6,8])} \\
\downarrow \\
14 \\
\text{sumlist([1,3,4,6,8])}
\]
sumlist: example

sumlist([1,3,4,6,8])

sumlist([1,3])
 sumlist([1]) sumlist([3])
 1 3

sumlist([4,6,8])
 sumlist([4])
 4

sumlist([6,8])
 sumlist([6])
 6

sumlist([8])
 8

14
18
sumlist: example

\[
\text{sumlist}([1,3,4,6,8]) = \text{sumlist}([1,3]) + \text{sumlist}([4,6,8])
\]

\[
\text{sumlist}([1,3]) = 1 + 3 = 4
\]

\[
\text{sumlist}([4,6,8]) = \text{sumlist}([4]) + \text{sumlist}([6]) + \text{sumlist}([8])
\]

\[
\text{sumlist}([4]) = 4
\]

\[
\text{sumlist}([6]) = 6
\]

\[
\text{sumlist}([8]) = 8
\]

\[
\text{sumlist}([1,3,4,6,8]) = 4 + 4 + 6 + 8 = 22
\]
Recursion: how to

To write a recursive function, figure out:

• *What values are involved in the computation?*
 – these will be the arguments to the recursive function

• *Base case(s)*
 – when to stop the repetition

• *Recursive case(s)*
 – what is the "rest of the computation" - i.e., the *smaller problem* to pass to the recursive call
recursion: example
binary search
Searching a sorted list

- Problem: Given a sorted list L and a value a, determine whether or not a is in L.

\[L \]

\[0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \]

\[a \quad \boxed{29} \]
Searching a sorted list

- Problem: Given a sorted list L and a value a, determine whether or not a is in L.

Q: Can $L[3]$ be a?

$a > L[4]$
Searching a sorted list

• Problem: Given a sorted list L and a value a, determine whether or not a is in L.

L sorted and $a > L[4]$ means a cannot be any of these elements
Binary search: recursive solution

bin_search(list, item)
 if the list is empty
 the item is not found (return False)
 look at the middle of the list
 if we found the item
 then done (return True)
 else
 if the item is less than the middle
 search in the lower half of the list
 else
 search in the upper half of the list

Exercise – write the code
Binary search: complexity

- The size of the search area is halved at each round of repetition

<table>
<thead>
<tr>
<th>Comparisons</th>
<th>Approx. number of items left</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>n/2</td>
</tr>
<tr>
<td>2</td>
<td>n/4</td>
</tr>
<tr>
<td>3</td>
<td>n/8</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>i</td>
<td>n/2^i</td>
</tr>
</tbody>
</table>

- The number of comparisons until we are done is i, where $n/2^i = 1$
- solving for i gives $i = \log n$
- total no. of rounds of repetition (recursion) $= \log_2(n)$
Binary search: complexity

• The size of the search area is halved at each round of repetition (recursion)
 – total no. of rounds of repetition = \(\log_2(n) \)
 or the number of comparisons is \(\log_2(n) \)

• However, on each round of repetition, the work done is *not* a fixed amount due to slicing
 – slicing is \(O(n) \)

• Fix that by computing the indices and passing them as parameters.
Binary search: no slicing

def bin_search(L, item, lo, hi):
 if lo > hi:
 return False
 if lo == hi:
 return L[lo] == item
 mid = (lo+hi)//2
 if item <= L[mid]:
 return bin_search(L, item, lo, mid)
 else:
 return bin_search(L, item, mid+1, hi)
Binary search: complexity

• The size of the search area is halved at each round of repetition (recursion)
 – total no. of rounds of repetition = $\log_2(n)$

• On each recursive step, the work done is a fixed amount
 – $O(1)$

∴ Overall complexity: $O(\log n)$
recursion: example
Example: merging two sorted lists

Problem: Given two sorted lists L1 and L2, merge them into a single sorted list

Example: $L1 = [11, 22, 33], \ L2 = [5, 10, 15]$

• Output: $[5, 10, 11, 15, 22, 33]$
 – can't just concatenate the lists
 – can't alternate between the lists
Merging: values involved

Problem: Given two sorted lists L1 and L2, merge them into a single sorted list

1. Values involved in the repetition: ???
Merging: values involved

Problem: Given two sorted lists L1 and L2, merge them into a single sorted list

1. Values involved in the computation in each (recursive) call: L1 and L2

So the recursive function will look something like

```python
def merge(L1, L2):
    ...
```
Merging: repetition

Problem: Given two sorted lists L_1 and L_2, merge them into a single sorted list.

2. What does the computation involve in each call?
Merging: repetition

Problem: Given two sorted lists L_1 and L_2, merge them into a single sorted list.

2. What does the computation involve in each call?

move the smaller value into the merged list
Merging: repetition

Problem: Given two sorted lists L_1 and L_2, merge them into a single sorted list

2. How does the problem (or data) get smaller?

move the smaller value into the merged list
repeat on the remaining list values
Merging: base case

Problem: Given two sorted lists L_1 and L_2, merge them into a single sorted list.

3. When can’t we make the data smaller?
Merging: base case

Problem: Given two sorted lists L_1 and L_2, merge them into a single sorted list

3. When can’t we make the data smaller?
 - when either L_1 or L_2 is empty

in this case, concatenate the other list into the merged list
Merging: base case

The code looks something like:

```python
def merge(L1, L2, merged):
    if L1 == []:
        return merged + L2
    elif L2 == []:
        return merged + L1
    else:
        ....
```
Merging: base case

The code looks something like:

```python
def merge(L1, L2, merged):
    if L1 == [] or L2 == []:
        return merged + L1 + L2
    else:
        ....
```
Merging: recursive case

Problem: Given two sorted lists L_1 and L_2, merge them into a single sorted list.

4. What is "the rest of the computation"?
 - "repeat on the remaining list values"
Merging: recursive case

if L1[0] < L2[0]:
 new_merged = merged + [L1[0]]
 new_L1 = L1[1:]
 new_L2 = L2
else:
 new_merged = merged + [L2[0]]
 new_L1 = L1
 new_L2 = L2[1:]
return merge(new_L1, new_L2, new_merged)
Merging: putting it all together

```python
def merge(L1, L2, merged):
    if L1 == [] or L2 == []:
        return merged + L1 + L2
    else:
        if L1[0] < L2[0]:
            new_merged = merged + [ L1[0] ]
            new_L1 = L1[1:]
            new_L2 = L2
        else:
            new_merged = merged + [ L2[0] ]
            new_L1 = L1
            new_L2 = L2[1:]
        return merge(new_L1, new_L2, new_merged)
```

>>> def merge(L1, L2, merged):
 if L1 == [] or L2 == []:
 return merged + L1 + L2
 else:
 if L1[0] < L2[0]:
 new_merged = merged + [L1[0]]
 new_L1 = L1[1:]
 new_L2 = L2
 else:
 new_merged = merged + [L2[0]]
 new_L1 = L1
 new_L2 = L2[1:]
 return merge(new_L1, new_L2, new_merged)

>>> merge([11, 22, 33], [5, 10, 15, 20, 25], [])
[5, 10, 11, 15, 20, 22, 25, 33]

>>>
recursion: flow of values
Recursion: flow of values

Version 1

```python
def sumlist1(L):
    if len(L) == 0:
        return 0
    else:
        return L[0] + sumlist1(L[1:])
```

Diagram:
- `sumlist1([11,22,33])`
 - Output: 66
- `sumlist1([22,33])`
 - Output: 55
- `sumlist1([33])`
 - Output: 33
- `sumlist1([])`
 - Output: 0
Recursion: flow of values

def merge(L1, L2, merged):
 if L1 == [] or L2 == []:
 return merged + L1 + L2
 else:
 if L1[0] < L2[0]:
 new_merged = merged + [L1[0]]
 new_L1 = L1[1:]
 new_L2 = L2
 else:
 new_merged = merged + [L2[0]]
 new_L1 = L1
 new_L2 = L2[1:]
 return merge(new_L1, new_L2, new_merged)
Recursion: flow of values

```python
>>> def merge(L1, L2):
    if L1 == [] or L2 == []:
        return L1 + L2
    else:
        if L1[0] < L2[0]:
            return [L1[0]] + merge(L1[1:], L2)
        else:
            return [L2[0]] + merge(L1, L2[1:])

>>> merge([11, 22, 33], [5, 10, 15, 20, 25])
[5, 10, 11, 15, 20, 22, 25, 33]
>>> 
```

the computation of each round of repetition takes place as values are passed up as return values
recursion: application merge sort
Sorting

• Problem: Given a list L, sort the elements of L into a list $\text{sorted}L$

• Important problem
 – arises in a wide variety of situations
 – many different algorithms, with different assumptions and characteristics
 – we will consider just one algorithm
Algorithm: mergesort

input list

split into two halves

sort the halves recursively

merge the sorted lists
Mergesort

• Base case: \(\text{len}(L) \leq 1 \)
 – no further halving possible

• Recursive case:
 – setting up the next round of computation: splitting the list
 – smaller problem to recurse on: a list of half the size

• Each round of computation: merging the sorted lists
 – has to be done after the recursive call
def msort(L):
 if len(L) <= 1:
 return L
 else:
 split_pt = len(L)//2
 L1 = L[:split_pt]
 L2 = L[split_pt:]
 sortedL1 = msort(L1)
 sortedL2 = msort(L2)
 return merge(sortedL1, sortedL2)
Mergesort: example

\texttt{msort([1, 3, 2, 5, 4])}
Mergesort: example

msort([1, 3, 2, 5, 4])

msort([1, 3])

msort([2, 5, 4])
Mergesort: example

```
msort([1, 3, 2, 5, 4])
msort([1, 3])
msort([2, 5, 4])
msort([1])
msort([3])
```
Mergesort: example

\[
\text{msort}([1, 3]) \quad \text{msort}([2, 5, 4]) \\
\downarrow \quad \downarrow \\
[1] \quad [3]
\]

\[
\text{msort}([1, 3, 2, 5, 4])
\]
Mergesort: example

msort([1, 3])
msort([1]) msort([3])
[1] [3]
merge([1], [3])

msort([2, 5, 4])

msort([1, 3, 2, 5, 4])
Mergesort: example

\[
\text{msort}([1, 3, 2, 5, 4])
\]

\[
\text{msort}([2, 5, 4])
\]

\[
\text{msort}([1, 3])
\]

\[
\text{msort}([1])
\]

\[
\text{msort}([3])
\]

\[
\text{merge}([1], [3])
\]

\[
[1, 3]
\]
Mergesort: example

Mergesort: example

\[
\text{msort([1, 3, 2, 5, 4])}
\]

\[
\text{msort([1, 3])}
\]

\[
\text{msort([1])}
\]

\[
\text{msort([3])}
\]

\[
\text{merge([1], [3])}
\]

\[
[1, 3]
\]

\[
\text{msort([2, 5, 4])}
\]
Mergesort: example
Mergesort: example

```
msort([1, 3, 2, 5, 4])
  ↓  msort([1, 3])
  ↓  msort([1])
  ↓  [1]
  ↓  merge([1], [3])
  ↓  [1, 3]

msort([2, 5, 4])
  ↓  msort([2])
  ↓  [2]

msort([5, 4])
  ↓  [5, 4]
```
Mergesort: example

\[
\text{merge}(\{1\}, \{3\}) = \{1, 3\}
\]

\[
\text{mergesort}([1, 3, 2, 5, 4])
\]

\[
\text{mergesort}([1, 3])
\]

\[
\text{mergesort}([2, 5, 4])
\]

\[
\text{mergesort}([1])
\]

\[
\text{mergesort}([3])
\]

\[
\text{mergesort}([2])
\]

\[
\text{mergesort}([5, 4])
\]

\[
\text{mergesort}([5])
\]

\[
\text{mergesort}([4])
\]
Mergesort: example

merge([1], [3])

msort([1, 3])

msort([1])

msort([3])

msort([2])

msort([5, 4])

msort([2, 5, 4])

msort([5])

msort([4])

msort([1, 3, 2, 5, 4])

[1, 3, 2, 5, 4]
Mergesort: example

msort([1, 3, 2, 5, 4])

msort([1, 3])

msort([1])

msort([3])

msort([2])

msort([2, 5, 4])

msort([5, 4])

msort([5])

msort([4])

merge([1], [3])

merge([5], [4])

[1, 3]

[1]

[2]

[3]

[5]

[4]
Mergesort: example

\[\text{msort(\{1, 3, 2, 5, 4\})}\]
\[\text{msort(\{1, 3\})}\]
\[\text{msort(\{2, 5, 4\})}\]
\[\text{msort(\{1\})}\]
\[\text{msort(\{3\})}\]
\[\text{msort(\{2\})}\]
\[\text{msort(\{5, 4\})}\]

\[\text{merge(\{1\}, \{3\})}\]
\[\text{merge(\{5\}, \{4\})}\]

\[\text{\{1, 3\}}\]
\[\text{\{4, 5\}}\]
Mergesort: example

msort([1, 3, 2, 5, 4])

msort([1])

[1]

msort([3])

[3]

merge([1], [3])

[1, 3]

msort([2])

[2]

msort([5, 4])

[5]

msort([4])

[4]

merge([5], [4])

[4, 5]

merge([2], [4, 5])

[2, [4, 5]]
Mergesort: example

\[
\text{msort}([1, 3, 2, 5, 4])
\]

- \text{msort}([1, 3])
 - \text{msort}([1])
 - [1]
 - \text{merge}([1], [3])
 - [1, 3]
 - \text{msort}([3])
 - [3]
- \text{msort}([2])
- \text{msort}([5, 4])
 - \text{msort}([5])
 - [5]
 - \text{merge}([5], [4])
 - [4, 5]
 - \text{msort}([4])
 - [4]

\[
\text{merge}([1, 3], [2, 5, 4])
\]

\[
\text{merge}([2, 4, 5])
\]
Mergesort: example
Mergesort: example

```
Mergesort: example

msort([1, 3, 2, 5, 4])

msort([1, 3])
msort([1])
msort([3])

[1]
msort([2, 5, 4])

[3]
msort([2])
[2]

merge([1], [3])

[5]
msort([5, 4])

merge([5], [4])

[4, 5]
msort([4])

merge([2], [4, 5])

[2, 4, 5]

merge([1, 3], [2, 4, 5])

[1, 2, 3, 4, 5]
```
Mergesort: complexity

Cost = \left(\text{cost per round of repetition} \right) \times \left(\text{no. of rounds of repetition} \right)_{\text{worst case}}

merging the sorted lists is $O(n)^*$

*if slicing is removed from merge
Mergesort: complexity

\[
\begin{align*}
[a_0, a_1, ..., a_{n-1}] \\
[a_0, ..., a_{n/2}] & [a_{n/2+1}, ..., a_{n-1}] \\
\vdots \\
[a_0, a_1, a_2, a_3] & ... & [a_{n-4}, a_{n-3}, a_{n-2}, a_{n-1}] \\
[a_0, a_1] & [a_2, a_3] & ... & [a_{n-4}, a_{n-3}] & [a_{n-2}, a_{n-1}] \\
[a_0] & [a_1] & [a_2] & [a_3] & ... & [a_{n-4}] & [a_{n-3}] & [a_{n-2}] & [a_{n-1}] \\
\end{align*}
\]

\[2^k = n\]
Mergesort: complexity

• No. of rounds of recursion:
 – if we start with a list of size \(n \) and have \(k \) rounds of recursion, then \(2^k = n \)
 \[
 \therefore \log_2(2^k) = \log_2(n)
 \]
 \[
 \therefore k = \log_2(n)
 \]

• Complexity of each round of recursion: \(O(n) \)

\[\Rightarrow \text{Worst-case complexity of mergesort: } O(n \log n) \]
recursion: summary
Recursion: summary

• Recursion offers a way to express repetitive computations cleanly and succinctly

• How to:
 – what are the values used in recursive call?
 – base case: when does the recursion stop?
 – recursive case:
 o what does a single round of computation involve?
 o what is the “smaller problem” to recurse on?

• Recursion is an essential component of every good computer scientist’s toolkit