CSc 120

Introduction to Computer
Programming ||

15: Hashing

Hashing

Searching

We have seen two search algorithms:

— linear (sequential) search O(n)
o the items are not sorted
— binary search O(log n)

o the items are sorted
o must consider the cost of sorting

e Can we do better?

* Have you considered how a Python dictionary
might be implemented?

ADT - Dictionary

* A dictionary is an ADT that holds key/value pairs
and provides the following operations:
— put(key, value)
o makes an entry for a key/value pair
o assumes key is not already in the dictionary

— get(key) looks up key in the dictionary
o returns the value associated with key (and None if not found)

ADT - Dictionary

Usage:
>>> d = Dictionary(7)
>>>
>>> d.put('five’, 5)
>>> d.put('three’, 3)

Problem:
Implement Dictionary

Hint:
>>>d. pairs
[['five', 5], ['three’, 3], None, None, None, None, None]

ADT — Dictionary solution 1

class Dictionary:
def _init_ (self,capacity):
each element will be a key/value pair
self. _pairs = [None] * capacity
self. nextempty =0

def put(self, k, v):
self. pairs[self. nextempty] = [k,V]
self. nextempty +=1

def get(self, k):
for pair in self._pairs[0:self._nextempty]:
if pair[0] == k:
return pair[1]
return None

Performance

* What is big-O of the Dictionary's methods?

— put()
— get()

Can we do better than O(n) for get()?
Consider this:

alist[3] # this "get" or "lookup" is O(1)
Why is this O(1)?

indices are contiguous

easy to compute starting point plus offset

Can we 'transform’ keys into integers that fall into a small,
contiguous range?

Beating O(n)

Can we 'transform' keys into integers that fall into a
small range?

"hello" -> 147
llall _> 422

How could we turn a key (string) into an integer?
— simple method: use the length

“Hash” the key (colloguial meaning)
Chop up the key
Scramble the key to get a value

Hashing

* A hash function is a function that can be used to
map data of arbitrary size to a value in a fixed
range

* |s the following a hash function?
def hash (key) :

return len (key)

 Strings are arbitrary length

— modify hash (key) to return a value in a fixed range
— an integer between 0and 7

Exercise

Problem:

Modify Dictionary to use a hash function to compute the
index for a new key/value pair.

(See solution on slide 28.)

10

Hashing

What happens in this situation?

>>> d.put('hello’, 14)

>>> d.put('e', 351)

>>> d.put('hat’, 8)

>>> d.put('conciousness’, 1)

11

Hashing

e Hash results:

'hello’

e

'hat’

v W = U

'consciousness'

* Collision: two or more keys have the same hash
value

12

Hashing

e Hash results:

key | _hashvalue _
'hello’
lel \

5
1

'hat’ 3 /
5

'consciousness'

collision

 Dictionary implementation view:

o | 1| 2 3]| 4 | 5 | 6
! ’ ’

['e’, 351] ['hat’, 8] ['hello’, 14]

Need a place to put ['consciousness’, 1]
13

Hashing and collisions

 perfect hash function: every key hashes to a unique
value
— most hash functions are not perfect

* Need a systematic method for placing keys in a
Dictionary (hash table) when collisions occur.

| ' ’

['e', 351] ['hat’, 8] ['hello’, 14]

Need a place to put ['consciousness’, 1]
14

Collision Resolution

* Methods for resolving collisions:

— increase the table size (the list in our example)
consider social security numbers: 333-55-8888
9 digits / 10° entries

— open addressing

o compute the hash value

o on collision, sequentially visit each slot in the hash table to find
an available spot

o visit each slot by going 'lower' in the table (decrement by 1)
o wrap if necessary

15

Collision Resolution

* Simplify the example by using integers for keys
* Hash function

h(key) = key % 7
* Hash values for the keys: 14, 2, 10, 19

___key | hashvalue _
14 0
2 2
10 3
19 5

 Hash table

o | 1| 2 3 | 4 | 5 | 6
14 2 10 19

16

Collision Resolution

e keys: 14, 2, 10, 19

* Now add 24
— h(key) = key % 7
=24%7
=3 < collision, use open addressing

e Hash table

o | 1 2 3 | 4 | 5 | 6
14 2 10 19

h(24) =3 —collision

17

Collision Resolution

e keys: 14, 2, 10, 19

* Now add 24
— h(key) =key % 7
=24%7

=3 < collision, use open addressing

e Hash table

o | 1 2 3 | 4 | 5 | 6
14 2 10 19

h(24) =3 —collision

look lower — occupied

18

Collision Resolution

e keys: 14, 2, 10, 19

* Now add 24
— h(key) =key % 7
=24%7

=3 < collision, use open addressing

e Hash table

o | 1 2 3 | 4 | 5 | 6
14 2 10 19
ﬁ |

h(24) =3 —collision

look lower — occupied

look lower — empty

19

Collision Resolution

* Probe sequence: the locations examined when
inserting a new key

h(24) =3
* The hash computation is the first "probe”
* Hash table

o | 1 2 3 | 4 | 5 | 6
14 2 10 19

20

Collision Resolution

* Probe sequence: the locations examined when
inserting a new key

h(24) =3
* The hash computation is the first "probe”
* Hash table

o | 1 2 3 | 4 | 5 | 6
14 2 10 19

first probe — collision 3

21

Collision Resolution

* Probe sequence: the locations examined when
inserting a new key

h(24) =3
* The hash computation is the first "probe”
* Hash table

o | 1 2 3 | 4 | 5 | 6
14 2 10 19

first probe — collision 3
second probe — occupied 2

22

Collision Resolution

* Probe sequence: the locations examined when
inserting a new key

h(24) =3
* The hash computation is the first "probe”
* Hash table

o | 1 2 3 | 4 | 5 | 6
14 2 10 19
ﬁ |

first probe — collision 3

second probe — occupied 2

third probe —empty 1 23

Collision Resolution

* Probe sequence: the locations examined when
inserting a new key

h(24) =3
* The hash computation is the first "probe”

¢ HaSh table probe sequence: 3, 2, 1
o | 1] 2 | 3 | 4 | 5 | 6
14 24 2 10 19

ﬁ T

first probe — collision 3

second probe — occupied 2

third probe —empty 1

24

Exercise

Use open addressing to insert the key 23 into the

hash table below. Give the probe sequence.
The hash function is the key % 7

hash table

o | 1| 2 3 | 4 | 5 | 6
14 24 2 10 19

25

Collision Resolution

open addressing:

— the probe sequence is linear
— the probe decrementis 1

open addressing with linear probing has serious
performance problems (!!)

When two keys collide at the same hash value, they
will follow the same initial probe sequence

Can we do better?
Hint: change the probe decrement.

Hashing

 SHA-1 (Secure Hash Algorithm 1)

* cryptographic hash function designed by the NSA
* 120 bits

* shown as hexadecimal number, 40 digits long
https://wingware.com/downloads/wingide-101

 MD5 (Message Digest 5)

— widely used hash function to verify data integrity
— now compromised
— 128 bits

http://archive.eclipse.org/eclipse/downloads/drops/
R-3.8.2-201301310800/

27

ADT — Dictionary solution w/hashing

class Dictionary:
def init_ (self, capacity):
each element will be a key/value pair
self. pairs = [None] * capacity

def hash(self, k):
return len(k) % len(self._pairs)

def put(self, k, v):
self._pairs[self. _hash(k)] =[k,v] #use the hash function

def get(self, k):
return self. _pairs[self. hash(k)][1] #use the hash function

28

Questions

What is a hash function?

What is a collision?

In open addressing with linear probing, how are collisions
resolved?

29

Collision Resolution (revisited)

open addressing

— open addressing with linear probing

o compute the hash value

o on collision, sequentially visit each slot in the hash table to find
an available spot

o visit each slot by going 'lower' in the table (decrement by 1)
o wrap if necessary

terminology
— the probe sequence is linear
— the probe decrementis 1

30

Collision Resolution (revisited)

e keys: 14, 2, 10, 19

* Now add 24
— h(key) =key % 7
=24%7

=3 < collision, use open addressing

e Hash table

o | 1 2 3 | 4 | 5 | 6
14 2 10 19
ﬁ |

h(24) =3 —collision

look lower — occupied

look lower — empty 31

Exercise

Modify the put() method of the ATD below to implement open
addressing with linear probing.

class Dictionary:
def __init__ (self, capacity):
each element will be a key/value pair
self._pairs = [None] * capacity

def hash(self, k):
return len(k) % len(self._pairs)

def put(self, k, v):
self. pairs[self. hash(k)] = [k,v] #use the hash function

32

Clusters

* Cluster: a sequence of adjacent, occupied entries in
a hash table

* problems with open addressing with linear probing

— colliding keys are inserted into empty locations below
the collision location

— on each collision, a key is added at the edge of a cluster
— the edge of the cluster keeps growing

— the edges begin to meet with other clusters

— these combine to make primary clusters

Collision Resolution

open addressing

— idea: need a probe decrement that is different for keys
that hash to the same value

simple example
— the use mod for the hash

— use quotient for the probe
o note: cannot use O

— probe decrement function p(key)
the quotient of key after division by 7 (if the quotient is O, then 1)

or
max(1, key / 7)

called open addressing with double hashing

Collision Resolution — double hashing

* functions

h(key) =key % 7

p(key) = max(1, key / 7)
* values for the keys: 10, 2, 19, 14, 24, 23

key
10
2
19
14
24
23

__hash value _|_probe decrement _
3 1
2 1
5 2
0 2
3 3
2 3

35

Collision Resolution — double hashing
key | hashvalue | probe decrement _

10 3 1
2 2 1
19 5 2
14 0 2
24 3 3
23 2 3

hash table after inserting keys: 10, 2, 19, 14

o | 1| 2 3 | 4 | 5 | 6
14 2 10 19

Collision Resolution — double hashing

key
10
2
19
14
24
23

Now insert key 24:

o | 1| 2 3 | 4 | 5 | 6
14 2 10 19

__hash value _|_probe decrement

N W O U1 NN W

1

1
2
2
3
3

37

Collision Resolution — double hashing
key | hashvalue | probe decrement _

10 1
2
19
14
24
23

N W O U1 NN W

1
2
2
3
3

Now insert key 24:

o | 1 | 2 | 3 | 4 | 5 | 6
14 2 10 19

h(24) = 3 collision

What is the decrement?
What is the probe sequence?

Collision Resolution — double hashing
key | hashvalue | probe decrement _

10 1
2
19
14
24
23

N W O U1 NN W

1
2
2
3
3

Now insert key 24:

o | 1 | 2 | 3 | 4 | 5 | 6
14 2 10 24 19

h(24) = 3 collision

What is the decrement? 3
What is the probe sequence? 3,0, 4

Exercise
key | hashvalue | probe decrement |

10 1
2
19
14
24
23

N W O U1 NN W

1
2
2
3
3

Use double hashing to insert key 23:

o | 1| 2 3 | 4 | 5 | 6
14 2 10 24 19

40

Collision Resolution

open addressing with double hashing
— compute the hash value

— on collision, use the probe decrement function to
determine what slot to visit next

— wrap if necessary

improvement over linear probing

— when two keys collide, they usually follow different
probe sequences when a search is made for an empty
location

o hash(10) =3 hash(24) =3
o probe(10) =1 probe(24)=3
— prevents primary clustering

Hash functions and collisions

* Consider an ideal hash function h(k)

— it maps keys to hash values (slots) uniformly and
randomly

e Suppose T is a hash table having M table entries
from 0 to M-1

* An ideal hash function would imply that any slot
from 0 to M -1 is equally likely

* All slots equally likely, implies collisions would be
infrequent.

e |s that true?

42

collision phenomenon

* von Mises Birthday Paradox

— if there are 23 or more people in a room, there is
a >50% chance that two or more will have the
same birthday

43

collision phenomenon

Ball tossing model

Given

— a table T with 365 slots
(each is a different day of the year)

— toss 23 balls at random into these 365 slots

then

—there is a > 50% chance we will toss 2 or more
balls into the same slot

What?
— 23 balls in the table

— the table is only 6.3% full
23/365 =.063
— and we have a 50% chance of a collision!

44

collision phenomenon

Ball tossing model

P(n) = probability that tossing n balls into 365
slots has at least one collision

365!
365" (365—n)!

Pln) = 1

45

collision phenomenon

P(n) = probability that tossing n balls into 365 slots
has at least one collision

5 0.027

10 0.117

20 0.411

23 0.572 <— at 23, greater than 50% chance
30 0.706

40 0.891

50 0.970

60 0.994

70 0.99915958

80 0.99991433

100 0.99999969

collision phenomenon

P(n) = probability that tossing n balls into 365 slots
has at least one collision

5 0.027

10 0.117

20 0.411

23 0.572 <— at 23, greater than 50% chance
30 0.706

40 0.891 Our results:

50 0.970 58 people/ 365 possible birthdays
60 0.994 3 collljluolcsl.4

70 0.99915958 Aug 1

80 0.99991433 Aug 18

100 0.99999969 .

Collision resolution

A collision resolution algorithm must be guaranteed to
check every slot.

linear probing - yes (it sequentially walks through the slots)
double hashing -7

Does the probe sequence used for double hashing cover
the entire table? (l.e., is any slot ever missed?)

48

Collision resolution — double hashing
key | hashvalue | probe decrement _

10 1
2
19
14
24
23

N W O U1 NN W

1
2
2
3
3

Question: Does the probe sequence cover the entire
table?

o | 1 | 2 | 3 | 4 | 5 | 6

Use key 24. Show that the probe sequence visits
each slot. (Keep wrapping.)

49

Collision resolution

The probe sequence covers every slot.

This is true for every key in the table
o try it for other keys

Why?

The table size M and probe decrement are
relatively prime. Guarantees that the probe
sequence covers the table.

relatively prime

— have no common divisors other than 1
— think of reducing the fraction 36/45 to 4/5

Collision resolution

Two policies

— open addressing
o with linear probing
o with double hashing

A third policy

— separate chaining

51

Collision Resolution

separate chaining
— each table location references a linked list

— on collision, add to the linked list, starting at the collision
slot

table with keys 24 and 10 (using %7 for the hash):

None None None l None None l

None

None

Complexity
Analysis of separate chaining

If we have N keys, what is

— best case complexity for search:
(the key is the first item in the linked-list) O(1)

— worst case complexity for search:
(must exhaustively search one linked-list) O(n)

We have not been analyzing the average case.

We will use known results for average case of the
collision resolution policies.

Load factor

The load factor of a hash table with N keys and table
size M is given by the following:

A= N/M

load factor is a measure of how full the table is

Complexity is expressed in terms of the load factor.

EXERCISE

We have 60,000 items to store in a hash table using open

addressing with linear probing and we want a load factor
of .75.

How big should the hash table be?

55

Complexity

As load factor increases, efficiency of inserting new
keys decreases

Collisions
o must enumerate through the table to get an empty slot

Searching
o find it on the first try

o search by using the probe sequence
o or search the linked list

We will use known results for the average cases of
successful and unsuccessful search for the collision
resolution policies

Assume a table with load factor: A= N/M

Linear probing:
clusters form
leads to long probe sequences

It can be shown that the average number of probes is
|

1 1
E(y o m) for successful search

= (1 g X) for unsuccessful search
2 (1=)

Bad when load factor is close to 1
Not too bad when load factor is .75 or less

Results

>>> # |load factor is .75
>>>

>>> # linear probing - successful
>>>

>>> .5 *(1+1/.25)

2.5

>>> # linear probing - unsuccessful
>>>

>>> 5% (1+1/(.25 *.25))
8.5

58

Assume a table with load factor:
A= N/M

Double hashing:

clustering less common

It can be shown that the average number of probes is

1
iln (1 = /1) for successful search

1
(1 — ,1) for unsuccessful search

Very good when load factor is .75 or less

Results

>>> # |load factor is .75
>>>

>>> # double hashing - successful
>>>

>>> import math

>>>1/.75 * math.log(4)
1.8483924814931874

>>>

>>> # double hashing — unsuccessful
>>>1/.25

4.0

60

Assume a table with load factor: A= N/M

Separate chaining:

all keys that collide at a given has location are on the same
linked list

It can be shown that the average number of probes is

I
~

|
1+ > for successful search

A for unsuccessful search

Compare the three methods

Theoretical Results (hnumber of probes)

Successful search

Load Factor | 050 | 075 | 050 | 0% _

separate chaining 1.25 1.37 1.45 1.49
linear probing 1.50 2.50 5.50 50.5
double hashing 1.39 1.85 2.56 4.65

Unsuccessful search

Load Factor | 050 | 075 | 050 | 0% _

separate chaining 0.50 0.75 0.90 0.99
linear probing 2.50 8.50 50.50 5000.00
double hashing 2.00 4.00 10.00 100.00

62

Hashing Functions

Good performance requires a good hashing function.
— the hash function should not cause clustering

Most hash functions

— map keys to numbers (if not already numbers)
— then reduce that using mod

Example:
'hello' = len('hello') % 7

Must be aware of properties of the hashing function.

Hashing Functions

Example: hashing function hash
— add the ord values of a string
— mod by the table size M

For the key 'bat":
— hash('bat', M) = (ord('b') + ord('a') + ord('t')) % M

def hash(key, M):
sum=0
for cin key:
sum += ord(c)
return sum % M

What are the properties of this hash function?
Does it cause clustering?

Hashing Functions

def hash(key, M):
sum=0
for cin key:
sum += ord(c)
return sum % M

Use:
>>> hash("bat", 7)
3
>>> hash("tab", 7)
3
>>> hash("atb", 7)
3
>>> hash("tide", 7)
2
>>> hash("tied", 7)
2

65

Hashing Functions

Example: hashing function h
— add the ord values of a string
— mod by the table size M

hash('bat', M) = (ord('b') + ord('a') + ord('t")) % M

hash('tab', M) = (ord('t') + ord('a') + ord('b')) % M

What are the properties of this hash function?
— anagrams hash to the same value

Will that matter?
If it does, how would we fix that?

Hashing Functions

Example: hashing function h
— add the ord values of a string
— mod by the table size M

Modify to multiply by character position, i.e.,

hash('bat’, M) = (ord('b")*1 + ord('a')*2 + ord('t')*3) % M

hash('tab’, M) = (ord('t')*1 + ord('a')*2 + ord('b")*3) % M

67

Hashing Functions

Pitfalls with mod
h(k) =k mod M

Avoid powers of 2 for M
for M =2k h(k) =k mod 2P

This elects the b low order bits of k

In general, when using mod

avoid powers of 2
use prime numbers for M

68

