CSc 120
Introduction to Computer Programming II

08: Efficiency and Complexity
efficiency matters
reasoning about performance
Reasoning about efficiency

• Not just the time taken for a program to run
 – this can depend on:
 ○ processor properties that have nothing to do with the program (e.g., CPU speed, amount of memory)
 ○ what other programs are running (i.e., system load)
 ○ which inputs we use (some inputs may be worse than others)

• We would like to compare different algorithms:
 – without requiring that we implement them both first
 – abstracting away processor-specific details
 – considering all possible inputs
Primitive operations

• Abstract units of computation
 – convenient for reasoning about algorithms
 – approximates typical hardware-level operations

• Includes:
 – assigning a value to a variable
 – looking up the value of a variable
 – doing a single arithmetic operation
 – comparing two numbers
 – accessing a single element of a Python list by index
 – calling a function
 – returning from a function
Primitive ops and running time

• A primitive operation typically corresponds to a small constant number of machine instructions

• No. of primitive operations executed
 \propto no. of machine instructions executed
 \propto actual running time

• We consider how a function's running time depends on the size of its input
 – *which input do we consider?*
Best case vs. worst case inputs

```python
# lookup(str_, list_): returns the index where str_ occurs in list_
def lookup(str_, list_):
    for i in range(len(list_)):
        if str_ == list_[i]:
            return i
    return -1
```

- **Best-case scenario**: `str_ == list_[0] # first element`
 - loop does not have to iterate over `list_` at all
 - running time does not depend on length of `list_`
 - does not reflect typical behavior of the algorithm
Best case vs. worst case inputs

lookup(str_, list_): returns the index where str_ occurs in list_

def lookup(str_, list_):
 for i in range(len(list_)):
 if str_ == list_[i]:
 return i
 return -1

• Worst-case scenario: str_ == list_[-1] # last element
 – loop iterates through list_
 – running time is proportional to the length of list_
 – captures the behavior of the algorithm better
Best case vs. worst case inputs

lookup(str_, list_): returns the index where str_ occurs in list_

def lookup(str_, list_):
 for i in range(len(list_)):
 if str_ == list_[i]:
 return i
 return -1

• In reality, we get something in between
 - but "average-case" is difficult to characterize precisely
What about “average case”?
Worst-case complexity

• Considers worst-case inputs
• Describes the running time of an algorithm as a function of the size of its input ("time complexity")
• Focuses on the rate at which the running time grows as the input gets large
• Typically gives a better characterization of an algorithm's performance

• This approach can also be applied to the amount of memory used by an algorithm ("space complexity")
Example

Code

def lookup(str_, list_):
 for i in range(len(list_)):
 if str_ == list_[i]:
 return i
 return -1

Primitive operations

len(list_) : 1
range() : 1
in : 1
for : 2
list_[i] : 1
str_ : 1
== : 1
if : 1

each iteration: 9 primitive ops
Example

```python
def lookup(str_, list_):
    for i in range(len(list_)):
        if str_ == list_[i]:
            return i
    return -1
```

Total primitive ops executed:

- 1 iteration: 9 ops
- \(\therefore \) n iterations: 9n ops
- + return at the end: 1 op

\(\therefore \) total worst-case running time for a list of length \(n = 9n + 1 \)
asymptotic complexity
Asymptotic complexity

• In the worst-case, lookup(str_, list_) executes $9n + 1$ primitive operations given a list of length n

• To translate this to running time:
 − suppose each primitive operation takes k time units
 − then worst-case running time is $(9n + 1)k$

• But k depends on specifics of the computer, e.g.:

<table>
<thead>
<tr>
<th>Processor speed</th>
<th>k</th>
<th>running time</th>
</tr>
</thead>
<tbody>
<tr>
<td>slow</td>
<td>20</td>
<td>$180n + 20$</td>
</tr>
<tr>
<td>medium</td>
<td>10</td>
<td>$90n + 10$</td>
</tr>
<tr>
<td>fast</td>
<td>3</td>
<td>$27n + 3$</td>
</tr>
</tbody>
</table>
Asymptotic complexity

worst case running time = $A_n + B$

depends on processor-specific characteristics

depends on how the algorithm processes data
Asymptotic complexity

• For algorithm analysis, we focus on how the running time grows as a function of the input size n
 – usually, we do not look at the exact worst case running time
 – it's enough to know proportionalities

• E.g., for the lookup() function:
 – we say only that its running time is "proportional to the input length $n"
Example

Code

def list_positions(list1, list2):
 positions = []
 for value in list1:
 idx = lookup(value, list2)
 positions.append(idx)
 return positions
Example

def list_positions(list1, list2):
 positions = []
 for value in list1:
 idx = lookup(value, list2)
 positions.append(idx)
 return positions

Worst case behavior:

primitive operations = n(9n + 5) + 2 = 9n^2 + 5n + 2
running time = k(9n^2 + 5n + 2)
Example

Code

```python
def list_positions(list1, list2):
    positions = []
    for value in list1:
        idx = lookup(value, list2)
        positions.append(idx)
    return positions
```

Worst case: $9n^2 + 5n + 2$

As n grows, the $9n^2$ term grows faster than $5n+2$

\Rightarrow for large n, the n^2 term dominates

\Rightarrow running time depends primarily on n^2
Example

\[9n^2 + 5n + 2\]
Example

\[9n^2 + 5n + 2\]
Example

As n grows larger, the n^2 term dominates \Rightarrow the contribution of the other terms becomes insignificant.
Example 2: $2x^2 + 15x + 10$
Example 2: $2x^2 + 15x + 10$
Example 2: $2x^2 + 15x + 10$
Example 3: $x^3 + 100x^2 + 100x + 100$
Example 3: $x^3 + 100x^2 + 100x + 100$
Example 3: $x^3 + 100x^2 + 100x + 100$
Example 3: $x^3 + 100x^2 + 100x + 100$
Growth rates

• As input size grows, the fastest-growing term dominates the others
 - the contribution of the smaller terms becomes negligible
 - it suffices to consider only the highest degree (i.e., fastest growing) term

• For algorithm analysis purposes, the constant factors are not useful
 - they usually reflect implementation-specific features
 - to compare different algorithms, we focus only on proportionality
 ⇒ ignore constant coefficients
Comparing algorithms

Growth rate \(\propto n \)

```python
def lookup(str_, list_):
    for i in range(len(list_)):
        if str_ == list_[i]:
            return i
    return -1
```

Growth rate \(\propto n^2 \)

```python
def list_positions(list1, list2):
    positions = []
    for value in list1:
        idx = lookup(value, list2)
        positions.append(idx)
    return positions
```
Summary so far

• Want to characterize algorithm efficiency such that:
 − does not depend on processor specifics
 − accounts for all possible inputs

 ⇒ count primitive operations
 ⇒ consider worst-case running time

• We specify the running time as a function of the size of the input
 − consider proportionality, ignore constant coefficients
 − consider only the dominant term
 ◦ e.g., $9n^2 + 5n + 2 \approx n^2$
big-O notation
Big-O notation

Intuition:

When we say... *...we mean*

"f(n) is O(g(n))" "f is growing roughly as fast as g"

"big-O notation"
Big-O notation

• Captures the idea of the growth rate of functions, focusing on proportionality and ignoring constants

Definition: Let $f(n)$ and $g(n)$ be functions mapping positive integers to positive real numbers.

Then, $f(n)$ is $O(g(n))$ if there is a real constant c and an integer constant $n_0 \geq 1$ such that

$$f(n) \leq cg(n) \quad \text{for all } n > n_0$$
Big-O notation

$f(n)$ is $O(g(n))$ if there is a real constant c and an integer constant $n_0 \geq 1$ such that $f(n) \leq c \cdot g(n)$ for all $n > n_0$

“Once the input gets big enough, $c g(n)$ is (always) larger than $f(n)$”
Big-O notation: properties

• If $g(n)$ is growing faster than $f(n)$:
 - $f(n)$ is $O(g(n))$
 - $g(n)$ is not $O(f(n))$

•

• If $f(n) = a_0 + a_1 n + ... + a_k n^k$, then:

\[f(n) = O(n^k) \]

 - i.e., coefficients and lower-order terms can be ignored
Some common growth-rate curves

- $O(n)$
- $O(n \log(n))$
- $O(n^2)$
- $O(n^3)$
using big-O notation
Using big-O notation

<table>
<thead>
<tr>
<th>Code</th>
<th>Big-O complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>str_ == list_[i]</code></td>
<td>O(1)</td>
</tr>
</tbody>
</table>

O(1)
Using big-O notation

<table>
<thead>
<tr>
<th>Code</th>
<th>Big-O complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>if str_ == list_[i]:</code></td>
<td><code>O(1)</code></td>
</tr>
<tr>
<td><code>return i</code></td>
<td><code>O(1)</code></td>
</tr>
</tbody>
</table>
Using big-O notation

<table>
<thead>
<tr>
<th>Code</th>
<th>Big-O complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>for i in range(len(list_)):</td>
<td>O(n)</td>
</tr>
<tr>
<td>if str_ == list_[i]:</td>
<td></td>
</tr>
<tr>
<td>return i</td>
<td>O(1)</td>
</tr>
<tr>
<td>O(n) (worst-case)</td>
<td></td>
</tr>
<tr>
<td>(n = length of the list)</td>
<td></td>
</tr>
</tbody>
</table>
Using big-O notation

Code

```python
def lookup(str_, list_):
    for i in range(len(list_)):
        if str_ == list_[i]:
            return i
    return -1
```

Big-O complexity

- `O(1)`: Constant time
- `O(n)`: Linear time

The function `lookup` has a time complexity of `O(n)` because it iterates over the list once.
Using big-O notation

```
def list_positions(list1, list2):
    positions = []
    for value in list1:
        idx = lookup(value, list2)
        positions.append(idx)
    return positions
```

Big-O complexity:

- \(O(n) \) (worst-case) (\(n = \text{length of list1} \))
- \(O(n^2) \)
- \(O(n) \) (worst-case) (\(n = \text{length of list2} \))
Using big-O notation

def list_positions(list1, list2):
 positions = []
 for value in list1:
 idx = lookup(value, list2)
 positions.append(idx)
 return positions

Big-O complexity: $O(n^2)$
Computing big-O complexities

Given the code:

\[
\begin{align*}
\text{line}_1 & \quad \ldots \quad O(f_1(n)) \\
\text{line}_2 & \quad \ldots \quad O(f_2(n)) \\
\ldots & \\
\text{line}_k & \quad \ldots \quad O(f_k(n))
\end{align*}
\]

The overall complexity is

\[O(\max(f_1(n), f_s(n), \ldots, f_k(n)))\]

Given the code

\[
\begin{align*}
\text{loop} & \quad \ldots \quad O(f1(n)) \text{ iterations} \\
\text{line1} & \quad \ldots \quad O(f2(n))
\end{align*}
\]

The overall complexity is

\[O(f_1(n) \times f_2(n)) \]
my_rfind(mylist, elt) : find the distance from the end of mylist where elt occurs, -1 if it does not

def my_rfind(mylist, elt):
 pos = len(mylist) − 1
 while pos >= 0:
 if mylist[pos] == elt:
 return pos
 pos -= 1
 return -1

Worst-case big-O complexity = ???
EXERCISE

for each element of a list: find the biggest value
between that element and the end of the list

def find_biggest_after(arglist):
 pos_list = []
 for idx0 in range(len(arglist)):
 biggest = arglist[idx0]
 for idx1 in range(idx0+1, len(arglist)):
 biggest = max(arglist[idx1], biggest)
 pos_list.append(biggest)
 return pos_list

Worst-case big-O complexity = ???
Input size vs. run time: max()
EXERCISE

for each element of a list: find the biggest value
between that element and the end of the list

def find_biggest_after(arglist):
 pos_list = []
 for idx0 in range(len(arglist)):
 biggest = max(arglist[idx0:]) # library code
 pos_list.append(biggest)
 return pos_list

Worst-case big-O complexity = ???