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efficiency matters



reasoning about 
performance
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Reasoning about efficiency
• Not just the time taken for a program to run

‒ this can depend on:
o  processor properties that have nothing to do with the 

program (e.g., CPU speed, amount of memory)
o what other programs are running (i.e., system load)
o which inputs we use (some inputs may be worse than 

others)

• We would like to compare different algorithms:
‒ without requiring that we implement them both first
‒ abstracting away processor-specific details
‒ considering all possible inputs
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Primitive operations
• Abstract units of computation 

‒ convenient for reasoning about algorithms
‒ approximates typical hardware-level operations

•  Includes:
‒ assigning a value to a variable
‒ looking up the value of a variable
‒ doing a single arithmetic operation
‒ comparing two numbers
‒ accessing a single element of a Python list by index
‒ calling a function
‒ returning from a function
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Primitive ops and running time
• A primitive operation typically corresponds to a 

small constant number of machine instructions
• No. of primitive operations executed 
           no. of machine instructions executed
           actual running time

• We consider how a function's running time 
depends on the size of its input

‒ which input do we consider?
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Best case vs. worst case inputs

• Best-case scenario: str_ == list_[0]    # first element
‒ loop does not have to iterate over list_ at all
‒ running time does not depend on length of list_
‒ does not reflect typical behavior of the algorithm
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# lookup(str_, list_): returns the index where str_ occurs in list_ 
  

def lookup(str_, list_):
       for i in range(len(list_)):
             if str_ == list_[i]: 
                  return i
       return -1



Best case vs. worst case inputs

• Worst-case scenario: str_ == list_[-1]    # last element
‒ loop iterates through list_ 
‒ running time is proportional to the length of list_
‒ captures the behavior of the algorithm better
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# lookup(str_, list_): returns the index where str_ occurs in list_ 
  

def lookup(str_, list_):
       for i in range(len(list_)):
             if str_ == list_[i]: 
                  return i
       return -1



Best case vs. worst case inputs

• In reality, we get something in between
‒ but "average-case" is difficult to characterize precisely
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# lookup(str_, list_): returns the index where str_ occurs in list_ 
  

def lookup(str_, list_):
       for i in range(len(list_)):
             if str_ == list_[i]: 
                  return i
       return -1



What about “average case”?
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Worst-case complexity
• Considers worst-case inputs
• Describes the running time of an algorithm as a 

function of the size of its input ("time 
complexity")

• Focuses on the rate at which the running time 
grows as the input gets large

• Typically gives a better characterization of an 
algorithm's performance

• This approach can also be applied to the amount of 
memory used by an algorithm ("space 
complexity")
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Example
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def lookup(str_, list_):
       for i in range(len(list_)):
             if str_ == list_[i]: 
                  return i
       return -1

Code                               Primitive operations

len(list_) : 1

range( ) : 1
in : 1
for : 2

list_[i] : 1

str_ : 1

== : 1

if : 1

each iteration:
9 primitive ops



Example
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def lookup(str_, list_):
       for i in range(len(list_)):
             if str_ == list_[i]: 
                  return i
       return -1

Code                               Primitive operations

each iteration:
9 primitive ops

Total primitive ops executed:
        1 iteration: 9 ops
    n iterations: 9n ops
   + return at the end: 1 op

 total worst-case running time for a list of length n = 9n + 1

len(list_) : 1

range( ) : 1
in : 1
for : 2

list_[i] : 1

str_ : 1

== : 1

if : 1



asymptotic complexity
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Asymptotic complexity
• In the worst-case, lookup(str_, list_) executes 9n + 1 

primitive operations given a list of length n
•  To translate this to running time: 

‒ suppose each primitive operation takes k time units
‒ then worst-case running time is (9n + 1)k 

• But k depends on specifics of the computer, e.g.:
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Processor speed k running time

slow 20 180n + 20

medium 10 90n + 10

fast 3 27n + 3



Asymptotic complexity
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depends on processor-
specific characteristics

depends on how the 
algorithm processes data

worst case running time = An + B



Asymptotic complexity 
• For algorithm analysis, we focus on how the running 

time grows as a function of the input size n
‒ usually, we do not look at the exact worst case running 

time 
‒ it's enough to know proportionalities

• E.g., for the lookup() function:
‒ we say only that its running time is "proportional to 

the input length n"
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Example

def list_positions(list1, list2):
    positions = []
    for value in list1:
        idx = lookup(value, list2)
        positions.append(idx)
    return positions
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Code                                     Primitive operations



Example

def list_positions(list1, list2):
    positions = []
    for value in list1:
        idx = lookup(value, list2)
        positions.append(idx)
    return positions
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in : 1

for : 2

1

Code                                     Primitive operations

9n + 1

1

1

iterates 
n times

Worst case behavior:
 primitive operations  = n(9n + 5) + 2 = 9n2 + 5n + 2
 running time =  k(9n2 + 5n + 2)



Example

def list_positions(list1, list2):
      positions = []
    for value in list1:
        idx = lookup(value, list2)
        positions.append(idx)
    return positions
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Code                                     Primitive operations

Worst case: 9n2 + 5n + 2 

As n grows, the 9n2 term grows faster than 5n+2
 for large n, the n2 term dominates
 running time depends primarily on n2



Example 
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9n2
9n2 + 5n + 2



Example 
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9n2
9n2 + 5n + 2

9n2
9n2 + 5n + 2
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Example 
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9n2
9n2 + 5n + 2

9n2
9n2 + 5n + 2

9n2
9n2 + 5n + 2

As n grows larger, the n2 term dominates
Þ the contribution of the other terms 

becomes insignificant



Example 2: 2x2 + 15x + 10
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Example 2: 2x2 + 15x + 10
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2x2 + 15x + 10
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Example 2: 2x2 + 15x + 10
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2x2 + 15x + 10

2x2

2x2 + 15x + 10

2x2

2x2 + 15x + 10
2x2



Example 3: x3 + 100x2 + 100x + 100
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x3 + 100x2 + 100x + 100

x3



Example 3: x3 + 100x2 + 100x + 100
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x3 + 100x2 + 100x + 100

x3 + 100x2 + 100x + 100

x3



Example 3: x3 + 100x2 + 100x + 100
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x3 + 100x2 + 100x + 100

x3 + 100x2 + 100x + 100

x3x3 + 100x2 + 100x + 100
x3



Example 3: x3 + 100x2 + 100x + 100
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x3 + 100x2 + 100x + 100

x3

x3 + 100x2 + 100x + 100

x3x3 + 100x2 + 100x + 100
x3

x3 + 100x2 + 100x + 100
x3



Growth rates
• As input size grows, the fastest-growing term 

dominates the others
‒ the contribution of the smaller terms becomes 

negligible
‒ it suffices to consider only the highest degree (i.e., 

fastest growing) term 

• For algorithm analysis purposes, the constant factors 
are not useful

‒ they usually reflect implementation-specific features
‒ to compare different algorithms, we focus only on 

proportionality 
Þ ignore constant coefficients
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Comparing algorithms

Growth rate  n Growth rate  n2
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def lookup(str_, list_):
       for i in range(len(list_)):
             if str_ == list_[i]: 
                  return i
       return -1

def list_positions(list1, list2):
    positions = []
    for value in list1:
        idx = lookup(value, list2)
        positions.append(idx)
    return positions



Summary so far
• Want to characterize algorithm efficiency such that:

‒  does not depend on processor specifics
‒ accounts for all possible inputs

Þ count primitive operations
Þ consider worst-case running time

• We specify the running time as a function of the 
size of the input

‒ consider proportionality, ignore constant coefficients
‒ consider only the dominant term 

o e.g., 9n2 + 5n + 2    n2
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big-O notation
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Big-O notation

Intuition:
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When we say… …we mean
"f(n) is O(g(n))"   "f is growing roughly as fast as g"

"big-O notation"



Definition: Let f(n) and g(n) be functions mapping 
positive integers to positive real numbers. 

Then,  f(n) is O( g(n) )  if there is a real constant c and 
an integer constant n0  1 such that

f(n)  c g(n)     for all n > n0

Big-O notation
• Captures the idea of the growth rate of functions, 

focusing on proportionality and ignoring 
constants 
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Big-O notation
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f(n) is O( g(n) )  if there is a real constant c and an integer 
constant n0  1 such that  f(n)  c g(n)     for all n > n0

“Once the input gets big enough, 
c g(n) is (always) larger than f(n) ”



Big-O notation: properties
• If g(n) is growing faster 

than f(n):
‒ f(n) is O(g(n))
‒ g(n) is not O(f(n))

•

• If f(n) = a0 + a1n + ... + aknk, 
then:

         f(n) = O(nk)

‒ i.e., coefficients and 
lower-order terms can 
be ignored
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g(n)

f(n)



Some common growth-rate curves
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O(log n)

O(n)

O(n log(n))

O(n2)

O(n3)



using big-O notation
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Using big-O notation 

Code

     str_ == list_[i]

Big-O complexity

O(1)
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O(1)O(1)

O(1)



Using big-O notation 

Code

     if str_ == list_[i]: 
          return i

Big-O complexity

O(1)
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O(1)

O(1)

O(1)



Using big-O notation 

Code

     

Big-O complexity

O(n)
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for i in range(len(list_)):
             if str_ == list_[i]: 
                  return i

O(1)O(n)   (worst-case)
(n = length of the list)



Using big-O notation 

Code

     

Big-O complexity

O(n)
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def lookup(str_, list_):
       for i in range(len(list_)):
             if str_ == list_[i]: 
                  return i
       return -1

O(n)
O(1)



Using big-O notation 

Code Big-O complexity

O(n2)
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def list_positions(list1, list2):
      positions = []
      for value in list1:
          idx = lookup(value, list2)
          positions.append(idx)
      return positions O(n)   (worst-case)

(n = length of list2)

O(n)   (worst-case)
(n = length of list1)



Using big-O notation 

Code Big-O complexity

O(n2)
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def list_positions(list1, list2):
      positions = []
      for value in list1:
          idx = lookup(value, list2)
          positions.append(idx)
      return positions

O(n2)

O(1)



Computing big-O complexities
Given the code:

line1     ... O(f1(n))
line2     ... O(f2(n))
...
linek     ... O(fk(n))

The overall complexity is 

O(max(f1(n), fs(n), ..., fk(n)))

Given the code

loop  ... O(f1(n)) iterations
      line1    ... O(f2(n))

The overall complexity is

O( f1(n) x f2(n) )
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EXERCISE
# my_rfind(mylist, elt) : find the distance from the      
# end of mylist where elt occurs, -1 if it does not
def my_rfind(mylist, elt):
      pos = len(mylist) ‒ 1
      while pos >= 0:
             if mylist[pos] == elt:
                   return pos
             pos -= 1
      return -1
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Worst-case big-O complexity = ???



EXERCISE
# for each element of a list: find the biggest value      
# between that element and the end of the list
def find_biggest_after(arglist): 
      pos_list = []
      for idx0 in range(len(arglist)):
           biggest = arglist[idx0]
           for idx1 in range(idx0+1, len(arglist)):
                biggest = max(arglist[idx1], biggest)
           pos_list.append(biggest)
      return pos_list 
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Worst-case big-O complexity = ???



Input size vs. run time: max() 
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EXERCISE
# for each element of a list: find the biggest value      
# between that element and the end of the list
def find_biggest_after(arglist): 
      pos_list = []
      for idx0 in range(len(arglist)):
           biggest = max(arglist[idx0:])   # library code
           pos_list.append(biggest)
      return pos_list 
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Worst-case big-O complexity = ???
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