
CSc 120
Introduction to Computer Programming II

08: Efficiency and Complexity

2

efficiency matters

reasoning about
performance

3

Reasoning about efficiency
• Not just the time taken for a program to run

‒ this can depend on:
o processor properties that have nothing to do with the

program (e.g., CPU speed, amount of memory)
o what other programs are running (i.e., system load)
o which inputs we use (some inputs may be worse than

others)

• We would like to compare different algorithms:
‒ without requiring that we implement them both first
‒ abstracting away processor-specific details
‒ considering all possible inputs

4

Primitive operations
• Abstract units of computation

‒ convenient for reasoning about algorithms
‒ approximates typical hardware-level operations

• Includes:
‒ assigning a value to a variable
‒ looking up the value of a variable
‒ doing a single arithmetic operation
‒ comparing two numbers
‒ accessing a single element of a Python list by index
‒ calling a function
‒ returning from a function

5

Primitive ops and running time
• A primitive operation typically corresponds to a

small constant number of machine instructions
• No. of primitive operations executed
  no. of machine instructions executed
  actual running time

• We consider how a function's running time
depends on the size of its input

‒ which input do we consider?

6

Best case vs. worst case inputs

• Best-case scenario: str_ == list_[0] # first element
‒ loop does not have to iterate over list_ at all
‒ running time does not depend on length of list_
‒ does not reflect typical behavior of the algorithm

7

lookup(str_, list_): returns the index where str_ occurs in list_

def lookup(str_, list_):
 for i in range(len(list_)):
 if str_ == list_[i]:
 return i
 return -1

Best case vs. worst case inputs

• Worst-case scenario: str_ == list_[-1] # last element
‒ loop iterates through list_
‒ running time is proportional to the length of list_
‒ captures the behavior of the algorithm better

8

lookup(str_, list_): returns the index where str_ occurs in list_

def lookup(str_, list_):
 for i in range(len(list_)):
 if str_ == list_[i]:
 return i
 return -1

Best case vs. worst case inputs

• In reality, we get something in between
‒ but "average-case" is difficult to characterize precisely

9

lookup(str_, list_): returns the index where str_ occurs in list_

def lookup(str_, list_):
 for i in range(len(list_)):
 if str_ == list_[i]:
 return i
 return -1

What about “average case”?

10

A B C D E F G H
0

1

2

3

4

5

6

7

8

9

10

Inputs

Ru
nn

in
g

tim
e

best-case
time

worst-case
time

average
case?

…

Worst-case complexity
• Considers worst-case inputs
• Describes the running time of an algorithm as a

function of the size of its input ("time
complexity")

• Focuses on the rate at which the running time
grows as the input gets large

• Typically gives a better characterization of an
algorithm's performance

• This approach can also be applied to the amount of
memory used by an algorithm ("space
complexity")

11

Example

12

def lookup(str_, list_):
 for i in range(len(list_)):
 if str_ == list_[i]:
 return i
 return -1

Code Primitive operations

len(list_) : 1

range() : 1
in : 1
for : 2

list_[i] : 1

str_ : 1

== : 1

if : 1

each iteration:
9 primitive ops

Example

13

def lookup(str_, list_):
 for i in range(len(list_)):
 if str_ == list_[i]:
 return i
 return -1

Code Primitive operations

each iteration:
9 primitive ops

Total primitive ops executed:
 1 iteration: 9 ops
  n iterations: 9n ops
 + return at the end: 1 op

 total worst-case running time for a list of length n = 9n + 1

len(list_) : 1

range() : 1
in : 1
for : 2

list_[i] : 1

str_ : 1

== : 1

if : 1

asymptotic complexity

14

Asymptotic complexity
• In the worst-case, lookup(str_, list_) executes 9n + 1

primitive operations given a list of length n
• To translate this to running time:

‒ suppose each primitive operation takes k time units
‒ then worst-case running time is (9n + 1)k

• But k depends on specifics of the computer, e.g.:

15

Processor speed k running time

slow 20 180n + 20

medium 10 90n + 10

fast 3 27n + 3

Asymptotic complexity

16

depends on processor-
specific characteristics

depends on how the
algorithm processes data

worst case running time = An + B

Asymptotic complexity
• For algorithm analysis, we focus on how the running

time grows as a function of the input size n
‒ usually, we do not look at the exact worst case running

time
‒ it's enough to know proportionalities

• E.g., for the lookup() function:
‒ we say only that its running time is "proportional to

the input length n"

17

Example

def list_positions(list1, list2):
 positions = []
 for value in list1:
 idx = lookup(value, list2)
 positions.append(idx)
 return positions

18

Code Primitive operations

Example

def list_positions(list1, list2):
 positions = []
 for value in list1:
 idx = lookup(value, list2)
 positions.append(idx)
 return positions

19

in : 1

for : 2

1

Code Primitive operations

9n + 1

1

1

iterates
n times

Worst case behavior:
 primitive operations = n(9n + 5) + 2 = 9n2 + 5n + 2
 running time = k(9n2 + 5n + 2)

Example

def list_positions(list1, list2):
 positions = []
 for value in list1:
 idx = lookup(value, list2)
 positions.append(idx)
 return positions

20

Code Primitive operations

Worst case: 9n2 + 5n + 2

As n grows, the 9n2 term grows faster than 5n+2
 for large n, the n2 term dominates
 running time depends primarily on n2

Example

21

9n2
9n2 + 5n + 2

Example

22

9n2
9n2 + 5n + 2

9n2
9n2 + 5n + 2

9n2

Example

23

9n2
9n2 + 5n + 2

9n2
9n2 + 5n + 2

9n2
9n2 + 5n + 2

As n grows larger, the n2 term dominates
Þ the contribution of the other terms

becomes insignificant

Example 2: 2x2 + 15x + 10

24

2x2 + 15x + 10

2x2

Example 2: 2x2 + 15x + 10

25

2x2 + 15x + 10

2x2

2x2 + 15x + 10

2x2

Example 2: 2x2 + 15x + 10

26

2x2 + 15x + 10

2x2

2x2 + 15x + 10

2x2

2x2 + 15x + 10
2x2

Example 3: x3 + 100x2 + 100x + 100

27

x3 + 100x2 + 100x + 100

x3

Example 3: x3 + 100x2 + 100x + 100

28

x3 + 100x2 + 100x + 100

x3 + 100x2 + 100x + 100

x3

Example 3: x3 + 100x2 + 100x + 100

29

x3 + 100x2 + 100x + 100

x3 + 100x2 + 100x + 100

x3x3 + 100x2 + 100x + 100
x3

Example 3: x3 + 100x2 + 100x + 100

30

x3 + 100x2 + 100x + 100

x3

x3 + 100x2 + 100x + 100

x3x3 + 100x2 + 100x + 100
x3

x3 + 100x2 + 100x + 100
x3

Growth rates
• As input size grows, the fastest-growing term

dominates the others
‒ the contribution of the smaller terms becomes

negligible
‒ it suffices to consider only the highest degree (i.e.,

fastest growing) term

• For algorithm analysis purposes, the constant factors
are not useful

‒ they usually reflect implementation-specific features
‒ to compare different algorithms, we focus only on

proportionality
Þ ignore constant coefficients

31

Comparing algorithms

Growth rate  n Growth rate  n2

32

def lookup(str_, list_):
 for i in range(len(list_)):
 if str_ == list_[i]:
 return i
 return -1

def list_positions(list1, list2):
 positions = []
 for value in list1:
 idx = lookup(value, list2)
 positions.append(idx)
 return positions

Summary so far
• Want to characterize algorithm efficiency such that:

‒ does not depend on processor specifics
‒ accounts for all possible inputs

Þ count primitive operations
Þ consider worst-case running time

• We specify the running time as a function of the
size of the input

‒ consider proportionality, ignore constant coefficients
‒ consider only the dominant term

o e.g., 9n2 + 5n + 2  n2

33

big-O notation

34

Big-O notation

Intuition:

35

When we say… …we mean
"f(n) is O(g(n))" "f is growing roughly as fast as g"

"big-O notation"

Definition: Let f(n) and g(n) be functions mapping
positive integers to positive real numbers.

Then, f(n) is O(g(n)) if there is a real constant c and
an integer constant n0  1 such that

f(n)  c g(n) for all n > n0

Big-O notation
• Captures the idea of the growth rate of functions,

focusing on proportionality and ignoring
constants

36

Big-O notation

37

f(n) is O(g(n)) if there is a real constant c and an integer
constant n0  1 such that f(n)  c g(n) for all n > n0

“Once the input gets big enough,
c g(n) is (always) larger than f(n) ”

Big-O notation: properties
• If g(n) is growing faster

than f(n):
‒ f(n) is O(g(n))
‒ g(n) is not O(f(n))

•

• If f(n) = a0 + a1n + ... + aknk,
then:

 f(n) = O(nk)

‒ i.e., coefficients and
lower-order terms can
be ignored

38

g(n)

f(n)

Some common growth-rate curves

39

O(log n)

O(n)

O(n log(n))

O(n2)

O(n3)

using big-O notation

40

Using big-O notation

Code

 str_ == list_[i]

Big-O complexity

O(1)

41

O(1)O(1)

O(1)

Using big-O notation

Code

 if str_ == list_[i]:
 return i

Big-O complexity

O(1)

42

O(1)

O(1)

O(1)

Using big-O notation

Code

Big-O complexity

O(n)

43

for i in range(len(list_)):
 if str_ == list_[i]:
 return i

O(1)O(n) (worst-case)
(n = length of the list)

Using big-O notation

Code

Big-O complexity

O(n)

44

def lookup(str_, list_):
 for i in range(len(list_)):
 if str_ == list_[i]:
 return i
 return -1

O(n)
O(1)

Using big-O notation

Code Big-O complexity

O(n2)

45

def list_positions(list1, list2):
 positions = []
 for value in list1:
 idx = lookup(value, list2)
 positions.append(idx)
 return positions O(n) (worst-case)

(n = length of list2)

O(n) (worst-case)
(n = length of list1)

Using big-O notation

Code Big-O complexity

O(n2)

46

def list_positions(list1, list2):
 positions = []
 for value in list1:
 idx = lookup(value, list2)
 positions.append(idx)
 return positions

O(n2)

O(1)

Computing big-O complexities
Given the code:

line1 ... O(f1(n))
line2 ... O(f2(n))
...
linek ... O(fk(n))

The overall complexity is

O(max(f1(n), fs(n), ..., fk(n)))

Given the code

loop ... O(f1(n)) iterations
 line1 ... O(f2(n))

The overall complexity is

O(f1(n) x f2(n))

47

EXERCISE
my_rfind(mylist, elt) : find the distance from the
end of mylist where elt occurs, -1 if it does not
def my_rfind(mylist, elt):
 pos = len(mylist) ‒ 1
 while pos >= 0:
 if mylist[pos] == elt:
 return pos
 pos -= 1
 return -1

48

Worst-case big-O complexity = ???

EXERCISE
for each element of a list: find the biggest value
between that element and the end of the list
def find_biggest_after(arglist):
 pos_list = []
 for idx0 in range(len(arglist)):
 biggest = arglist[idx0]
 for idx1 in range(idx0+1, len(arglist)):
 biggest = max(arglist[idx1], biggest)
 pos_list.append(biggest)
 return pos_list

49

Worst-case big-O complexity = ???

Input size vs. run time: max()

50

0 2000000 4000000 6000000 8000000 10000000
0

20

40

60

80

100

120

140

160

Input size

Ru
nt

im
e

(m
s)

EXERCISE
for each element of a list: find the biggest value
between that element and the end of the list
def find_biggest_after(arglist):
 pos_list = []
 for idx0 in range(len(arglist)):
 biggest = max(arglist[idx0:]) # library code
 pos_list.append(biggest)
 return pos_list

51

Worst-case big-O complexity = ???

	Slide1
	Slide2
	Slide34
	Slide3
	Slide4
	Slide5
	Slide6
	Slide7
	Slide8
	Slide10
	Slide9
	Slide11
	Slide12
	Slide35
	Slide14
	Slide15
	Slide13
	Slide16
	Slide17
	Slide19
	Slide25
	Slide 22
	Slide 23
	Slide27
	Slide 25
	Slide 26
	Slide28
	Slide 28
	Slide 29
	Slide 30
	Slide29
	Slide30
	Slide18
	Slide36
	Slide38
	Slide31
	Slide32
	Slide33
	Slide46
	Slide37
	Slide39
	Slide40
	Slide41
	Slide42
	Slide43
	Slide44
	Slide51
	Slide45
	Slide47
	Slide50
	Slide49

