CSc 120
 Introduction to Computer Programming II

08: Efficiency and Complexity

efficiency matters

reasoning about performance

Reasoning about efficiency

- Not just the time taken for a program to run
- this can depend on:
- processor properties that have nothing to do with the program (e.g., CPU speed, amount of memory)
- what other programs are running (i.e., system load)
- which inputs we use (some inputs may be worse than others)
- We would like to compare different algorithms:
- without requiring that we implement them both first
- abstracting away processor-specific details
- considering all possible inputs

Primitive operations

- Abstract units of computation
- convenient for reasoning about algorithms
- approximates typical hardware-level operations
- Includes:
- assigning a value to a variable
- looking up the value of a variable
- doing a single arithmetic operation
- comparing two numbers
- accessing a single element of a Python list by index
- calling a function
- returning from a function

Primitive ops and running time

- A primitive operation typically corresponds to a small constant number of machine instructions
- No. of primitive operations executed
\propto no. of machine instructions executed \propto actual running time
- We consider how a function's running time depends on the size of its input
- which input do we consider?

Best case vs. worst case inputs

\# lookup(str_, list_): returns the index where str_ occurs in list_ def lookup(str_, list_):
for i in range(len(list_)):
if str_ $_{\text {_ }}=$ list_[i]:
return i
return -1

- Best-case scenario: str_ == list_[0] \# first element
- loop does not have to iterate over list_ at all
- running time does not depend on length of list_
- does not reflect typical behavior of the algorithm

Best case vs. worst case inputs

\# lookup(str_, list_): returns the index where str_ occurs in list_ def lookup(str_, list_):
for i in range(len(list_)):
if str_ $_{-}=$list_[i]:
return i
return -1

- Worst-case scenario: str_== list_[-1] \# last element
- loop iterates through list_
- running time is proportional to the length of list_
- captures the behavior of the algorithm better

Best case vs. worst case inputs

\# lookup(str_, list_): returns the index where str_ occurs in list_ def lookup(str_, list_):
for i in range(len(list_)):
if str_ $_{-}=$list_[i]: $^{\text {l }}$
return i
return -1

- In reality, we get something in between
- but "average-case" is difficult to characterize precisely

What about "average case"?

Worst-case complexity

- Considers worst-case inputs
- Describes the running time of an algorithm as a function of the size of its input ("time complexity")
- Focuses on the rate at which the running time grows as the input gets large
- Typically gives a better characterization of an algorithm's performance
- This approach can also be applied to the amount of memory used by an algorithm ("space complexity")

Example

Code

Primitive operations

Example

Code

Primitive operations

def lookup(str_, list_): for i in range(len(list_)): $-\{$ range() : 1 if str_ == list_[i]: return i
return -1
Total primitive ops executed:
1 iteration: 9 ops
\therefore n iterations: 9n ops

+ return at the end: 1 op
\therefore total worst-case running time for a list of length $\mathrm{n}=9 \mathrm{n}+1$

asymptotic complexity

Asymptotic complexity

- In the worst-case, lookup(str_, list_) executes $9 n+1$ primitive operations given a list of length n
- To translate this to running time:
- suppose each primitive operation takes k time units
- then worst-case running time is $(9 n+1) k$
- But k depends on specifics of the computer, e.g.:

Processor speed	\boldsymbol{k}	running time
slow	20	$180 \mathrm{n}+20$
medium	10	$90 \mathrm{n}+10$
fast	3	$27 \mathrm{n}+3$

Asymptotic complexity

Asymptotic complexity

- For algorithm analysis, we focus on how the running time grows as a function of the input size n
- usually, we do not look at the exact worst case running time
- it's enough to know proportionalities
- E.g., for the lookup() function:
- we say only that its running time is "proportional to the input length n "

Example

Code

def list_positions(list1, list2):
positions = []
for value in list1:
idx = lookup(value, list2) positions.append(idx)
return positions

Example

Code

Primitive operations

 def list_positions(list1, list2):1
return positions1

Worst case behavior:

primitive operations $=n(9 n+5)+2=9 n^{2}+5 n+2$ running time $=k\left(9 n^{2}+5 n+2\right)$

Example

Code

def list_positions(list1, list2):
positions = []
for value in list1:
idx = lookup(value, list2) positions.append(idx)
return positions

As n grows, the $9 n^{2}$ term grows faster than $5 n+2$
\Rightarrow for large n, the n^{2} term dominates
\Rightarrow running time depends primarily on n^{2}

Example

Example

Example

As n grows larger, the n^{2} term dominates
\Rightarrow the contribution of the other terms becomes insignificant

Example 2: $2 x^{2}+15 x+10$

Example 2: $2 x^{2}+15 x+10$

Example 2: $2 x^{2}+15 x+10$

Example 3: $x^{3}+100 x^{2}+100 x+100$

Growth rates

- As input size grows, the fastest-growing term dominates the others
- the contribution of the smaller terms becomes negligible
- it suffices to consider only the highest degree (i.e., fastest growing) term
- For algorithm analysis purposes, the constant factors are not useful
- they usually reflect implementation-specific features
- to compare different algorithms, we focus only on proportionality
\Rightarrow ignore constant coefficients

Comparing algorithms

Growth rate $\propto n$
def lookup(str_, list_): for i in range(len(list_)): if str_ == list_[i]: return i
return -1

Growth rate $\propto \mathbf{n}^{\mathbf{2}}$
def list_positions(list1, list2): positions = []
for value in list1: idx = lookup(value, list2)
positions.append(idx)
return positions

Summary so far

- Want to characterize algorithm efficiency such that:
- does not depend on processor specifics
- accounts for all possible inputs
\Rightarrow count primitive operations
\Rightarrow consider worst-case running time
- We specify the running time as a function of the size of the input
- consider proportionality, ignore constant coefficients
- consider only the dominant term
- e.g., $9 n^{2}+5 n+2 \approx n^{2}$
big-O notation

Big-O notation

Intuition:

When we say... ...we mean
 " $f(n)$ is $O(g(n))$ " "f is growing roughly as fast as g "

"big-O notation"

Big-O notation

- Captures the idea of the growth rate of functions, focusing on proportionality and ignoring constants

Definition: Let $f(n)$ and $g(n)$ be functions mapping positive integers to positive real numbers.

Then, $f(n)$ is $\mathrm{O}(g(n))$ if there is a real constant c and an integer constant $n_{0} \geq 1$ such that

$$
f(n) \leq c g(n) \quad \text { for all } n>n_{0}
$$

Big-O notation

$f(n)$ is $\mathrm{O}(g(n))$ if there is a real constant c and an integer constant $n_{0} \geq 1$ such that $f(n) \leq \mathrm{c} g(n) \quad$ for all $n>n_{0}$

Big-O notation: properties

- If $\mathrm{g}(\mathrm{n})$ is growing faster than $f(n)$:
$-f(n)$ is $O(g(n))$
$-g(n)$ is not $O(f(n))$
- If $\mathrm{f}(n)=a_{0}+a_{1} n+\ldots+a_{k} n^{k}$, then:

$$
f(n)=O\left(n^{k}\right)
$$

- i.e., coefficients and lower-order terms can be ignored

Some common growth-rate curves

Input size

using big-O notation

Using big-O notation

Code

Big-O complexity

O(1)

Using big-O notation

Code

Big-O complexity

O (1)

Using big-O notation

Code

Big-O complexity

for i in range(len(list_)):
$\mathrm{O}(\mathrm{n})$

O(n) (worst-case)
($\mathrm{n}=$ length of the list)
O(1)

Using big-O notation

Code

Big-O complexity

def lookup(str_, list_):
for i in range(len(list_))
O(n)

Using big-O notation

Code

Big-O complexity

$O\left(n^{2}\right)$

Using big-O notation

Code

Big-O complexity

def list_positions(list1, list2):
positions $=[] \quad O\left(n^{2}\right) \quad O\left(n^{2}\right)$
for value in list1:
idx = lookup(value, list2) positions.append(idx)
return positions

Computing big-O complexities

Given the code:

$$
\begin{array}{ll}
\text { line }_{1} & \ldots O\left(f_{1}(n)\right) \\
\text { line }_{2} & \ldots O\left(f_{2}(n)\right) \\
\ldots & \\
\text { line }_{k} & \ldots O\left(f_{k}(n)\right)
\end{array}
$$

The overall complexity is
$O\left(\max \left(\mathrm{f}_{1}(\mathrm{n}), \mathrm{f}_{\mathrm{s}}(\mathrm{n}), \ldots, \mathrm{f}_{\mathrm{k}}(\mathrm{n})\right)\right)$

Given the code

loop ... O(f1(n)) iterations line1 ... O(f2(n))

The overall complexity is
$O\left(f_{1}(n) \times f_{2}(n)\right)$

EXERCISE

\# my_rfind(mylist, elt) : find the distance from the \# end of mylist where elt occurs, -1 if it does not def my_rfind(mylist, elt):
pos $=\operatorname{len}(m y l i s t)-1$
while pos >= 0 :
if mylist[pos] == elt:
return pos
pos-= 1
return -1
Worst-case big-O complexity = ???

EXERCISE

\# for each element of a list: find the biggest value \# between that element and the end of the list def find_biggest_after(arglist):
pos_list = []
for idx0 in range(len(arglist)):
biggest = arglist[idx0]
for idx1 in range(idx0 $0+1$, len(arglist)):
biggest $=\max ($ arglist[idx1], biggest)
pos_list.append(biggest)
return pos_list
Worst-case big-O complexity = ???

Input size vs. run time: $\max ()$

EXERCISE

\# for each element of a list: find the biggest value \# between that element and the end of the list def find_biggest_after(arglist):
pos_list = []
for idx0 in range(len(arglist)):
biggest = max(arglist[idx0:]) \# library code pos_list.append(biggest)
return pos_list

Worst-case big-O complexity = ???

