CSc 127B — Introduction to Computer Science IT
Fall 2015 (McCann)

Answers to the
Practice Questions ahead of the Final Exam

The section leaders were kind enough to write some practice questions for you to work as you prepare for the
exam; those are in another handout. These are the SLs’ suggested answers for the questions.

1.
(a)
7
/ N\
4 8
/ 0\
2 3
(b) 2,3, 8
(¢) 7
(d) 2
(e) 3
2.
(a)
9
/
5
/
4
/
3
(b) O
(c) 1
3.

(a) O(n) (loop iterates n times over a constant # of statements)

(b) O(n?) (this is the sort of loop nesting you’d see in Selection Sort or Insertion Sort; both loops iterate
a max of n time; n * n = n?)

(¢) O(logyn) (we're counting toward n by powers of 2, so it will require approximately log, n iterations
to get there)

(Continued . ..)

1469237
1269437
1239467
1234967
1234697
1234679

187654329
127654389
123654789
123456789
123456789
123456789
123456789

5. The algorithm doesn’t have the ability to notice that the list is already sorted. It must continue through
all of the passes in all cases, best, worst or average.

(a)
476 823 (1 key comparison(s), 3 copies

467823

)

)

), 0 copies
246783 (4 key comparison(s), 6 copies

)

d

(

467823 (2key comparison(s
(1 key comparison(s
(

)
3 copies)
)
)

234678 (5 key comparison(s
Totals: 13 key comparisons, 18

6 copies)

ata movements

78654 3 (1 key comparison(s), 3 copies

(
678543 (2 key comparison(s), 4 copies

(

(

P N

()

()
56784 3 (3 key comparison(s), 5 copies)
456783 (4 key comparison(s), 6 copies)
345678 (5 key comparison(s), 7 copies)
Totals: 15 key comparisons, 25 data movements

(c) This sequence is already sorted. Each item only gets compared to the item at the end of the list
(there are n-1 passes, so n-1 comparisons), and no data to copy.

Totals: 5 key comparisons, 0 data movements

(Continued . ..)

(b)

ii.

The second one. Each insertion was deeper than the last, resulting in a tree than looks like a linked
list. We know that searching to the end of a linked list is O(n), but searching to the bottom of a
‘bushy’ tree is just O(log, n).

The answer to this depends on how the Quicksort algorithm is implemented. If we assume that
Quicksort is called on any size list, then there will be 7 total calls: The call to sort the original list,
the call to sort the list of one item (a base case, so it returns immediately), the call to sort the right
side (7 4 5 8), the call to sort 7 4 5, the call to sort 4, the call to sort 7, and the call to sort the
length zero list to the right of 8.

Divide and Conquer

Choosing the largest item in the list, or the smallest item in the list, as your pivot. In either
situation, the list shrinks by only one item instead of cutting the list in half, and Quicksort can sort
two half-lists a lot faster than one list with one less item.

Class Package Subclass World
it fommmm o Fomm o Fommm +
public | Y | Y | Y Yy |
fomm - o e fomm - +
protected | Y | Y | Y | N
dom - domm domm - Fomm - +
- Iy | Y I N I N |
pomm fommm Fomm pomm +
private | Y | N | N I N |
fommm— - fommmm Fom e pom - +

(I didn’t actually have time to present this in class, but I did post slides on it. —lim)

