CSc 127B — Introduction to Computer Science II
Fall 2015 (McCann)

http://www.cs.arizona.edu/classes/cs127b /falll5/

Section 9:
Queues and a Taste of Linked Lists

Pair up with anyone who is agreeable to pairing up with you, pick the first driver, and let’s get to work!

PART I: A StringBuilder Queue

In Section 8, you created a stack class that stacked characters using a StringButlder object
as the stack’s representation. In Part II of this activity, you will have need of that stack class,
and of a queue class that also holds characters. In this part you’ll create that queue class, which
also uses a StringBuilder object as its data structure.

1. Open DrJava, and create a class named QueueSec9 that uses a StringBuilder object to hold characters
in a queue. Here are the method signatures of the methods that your class needs to provide:

QueueSec9() — the constructor; creates an empty queue

boolean isEmpty() — true if no characters in the queue; false otherwise
int getOccupancy() — quantity of characters in the queue

void enqueue(char) — add char to the rear of the queue

int dequeue() — removes the front character, returns -1 if empty

int peek() — shows the character at the front of the queue, returns -1 if empty

Make it happen! (Hint: Looking at your StackSec8 class from Section 8 might help.)

2. Copy and paste the main program file, QueueSec9Main. txt, from the class web page into your QueueSec9

class.

3. Compile and run QueueSec9. If necessary, debug your methods until you're getting the output specified
in QueueSec9Main.txt’s comment.

@ CHECKPOINT 1 |Raise your hand. Your SL will come over and verify that your class is working.

PART II: Detecting Palindromes with a Stack and a Queue

A palindrome, as your SL explained at the start of section today, is a word or phrase whose
letters appear in the same order left-to-right and right-to-left. For example, I’m a lasagna
hog, go hang a salami. is a palindrome (we ignore spaces and punctuation symbols).

One way to test a string to see if it is a palindrome: Take each letter in the string and
both push it onto a stack and enquque it into a queue. Then, repeatedly pop the stack and
dequeue from the queue. If the pairs of characters removed do not match, then the string is not
a palindrome. But, if you empty both data structures and all of the pairs of characters have
matched, the string is a palindrome.

1. Locate your version of StackSec8 from last week and load it into DrJava. If neither you nor your partner
have a working version, you can use the version on the class web page (under the link to this handout,
not in the Section 8 area).

(Continued . ..)



2. Using a pen/pencil and paper, use the algorithm described at the top of this part, and drawings of a
stack and a queue, to test each of these four small strings:

(
(b

)
)
()
)

a) kayak (a palindrome)

abcb (one ‘a’ short of being a palindrome)

bcba (same, but on the opposite end)

(d) abcdeba (not a palindrome; ‘c’ doesn’t pair with ‘e’)

(The point is to get a feel for how the algorithm works, which should make it easier to write a program
that carries out that algorithm.)

3. Write a Java program named PalPal. java (for ‘Palindrome Pal’) that takes a string from the command
line and tests it to see if it is a palindrome using the stack/queue algorithm. The following execution
examples show the behaviors your SL will expect your program to demonstrate:

> java PalPal

Usage example: java PalPal "Yo, banana boy!"

> java PalPal ""
"" is a palindrome!

> java PalPal "Sit on a potato pan, Otis!"
"Sit on a potato pan, Otis!" is a palindrome!

> java PalPal "abcb"

"abcb" is not a palindrome;
the problem is that ’a’ doesn’t match ’b’.

> java PalPal "bcba"

"bcba" is not a palindrome;
the problem is that ’b’ doesn’t match ’a’.

> java PalPal "abcdeba"
"abcdeba" is not a palindrome;
the problem is that ’c’ doesn’t match ’e’.

Hint: Remember that the Character wrapper class has static methods that can test characters to see if
they have various properties.

@l CHECKPOINT 2

Raise your hand. Your SL will come over and check that your program is

working (and is following the given algorithm).

PART III: Tracing Linked List Code

Writing correct linked-list code requires the ability to trace through the code to understand the
operations that need to be performed, and the order in which they need to be performed. Your
SL did a tracing example earlier. Now it’s your chance to try it.

1. Find that pen/pencil, and the paper, you used in Part II; they couldn’t have gotten far.

2. Draw yourself three example linked lists: One with three nodes, one with just one node, and one with no
nodes (head just references null). Each node should hold one integer value (and a next field, of course).

(Continued . ..)



3. As your SL did at the start of section today, trace the execution of the following linked-list code on each
of your three example lists. Do this tracing in a “pair programming” fashion; that is, one person uses
the pen and paper to trace the execution, the other is the helper.

This code is supposed to compute the sum of the values held by the nodes in the list, but it has some
logic problems. While you’re tracing it on your example lists, figure out why the code doesn’t work, and
fix it so that it does work on all three of your lists. Be sure to write down the necessary changes; your
SL will want to know what they are.

1 private static int sum (LLNode head)
2 {

3 LLNode temp = head;

4 int total = head.getData();

5 while (temp != null) {

6 temp = temp.getNext();

7 total += temp.getData();

8 }

9 return total;

10 }

4. Switch roles; the helper is now the tracer, and the tracer is now the helper. (If you were switching roles
between lists above, great; keep doing that!)

5. We aren’t going to tell you what the following code does; your job is to figure that out by tracing the
execution on your example lists. There aren’t any bugs (that we know of!) in this method; all you have
to do is figure out what it does.

1 private static LLNode mystery (LLNode r)
2 {

3 LLNode u = r, t = null, n = t;
4 while (u '= null) {

5 t = n;

6 n = u;

7 u = u.getNext();

8 n.setNext(t);

9 }

10 return n;

11 }

6. Did you enjoy the lack of comments and the meaningless variable names? Take that to heart when
writing your own code. Good programming style is important, which is why a significant portion of your
grade on programming assignments is devoted to it.

(5] CHECKPOINT 3 | Raise your hand. Your SL will come over and see how you did.

PART IV: Clean Up!

1. Log out of your computer; pick up your papers, writing implements, cell phones, trash, etc.; push in your
chair(s).

(5] CHECKPOINT 4 | Raise your hand. Your SL will come over and use his or her tricorder to count

the bacteria lingering on your keyboard. (Don’t expect him or her to say, “They’re dead, Jim” unless
your name is actually ‘Jim.”)




