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Section 12:

Binary Trees

Pair up with anyone who is agreeable to pairing up with you, pick the first driver, and let’s get to work!

PART I: Expression Trees and Traversals

In class Monday we did a walk-through of the expression tree creation algorithm. Being able to

follow an algorithm by hand is an important skill for a computer scientist ... and the postfix

algorithm question on the last midterm showed that the class could use some more practice with

following algorithms.

1. On the class web page, in the Class Handouts section, is the Expression Tree Creation Algorithm. Open
a web browser and open that document.

2. Dig out a sheet of paper and a pen/pencil. Walk through that algorithm on the following expression,
and show your final expression tree. (Your SL will want to see it.)

s = u * t + 1 / 2 * a * t * t

3. Now that you have created a binary tree, we might as well make use of it to practice tree traversals. We
learned Monday about these three traversals:

(a) Preorder: Visit, Recurse Left, Recurse Right

(b) Inorder: Recurse Left, Visit, Recurse Right

(c) Postorder: Recurse Left, Recurse Right, Visit

Perform each on your expression tree, and write down the results.

4. Take a look at the inorder traversal and the original expression that you used to create the tree. What
do you notice?

5. Take a look at the postorder traversal and the original expression. Does the traversal remind you of
anything?

©✔ CHECKPOINT 1 Raise your hand. Your SL will come over and ask about your answers.
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PART II: Printing a Tree Using Indentation

Imagine rotating your expression tree from Part I 90 degrees counter-clockwise. Now imagine

printing the data held by each node, one data value per line, with indentation that helps show

the depth of each node. If you could do this, you’d have a crude but useful way to display the

content of a tree, a technique that would be useful for debugging tree creation algorithms. Bonus:

This is easy to do recursively!

1. Here’s an example of this ‘90 degrees counter-clockwise’ tree drawing using an indentation of four spaces
for each level of depth (thus, zero spaces of indentation for Y, the root) and one line of output for each
node of the tree:
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Binary Tree 90 deg. CCW Representation

Look at this carefully until you are confident that you see how the 90 degree CCW representation
corresponds to the original tree.

2. Your turn! Shown below is a different binary tree. Draw its 90 degree CCW representation.
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3. Time to write a method that produces such representations. On the class web page are the files
Sec12PartII.java and BinaryNode.java. Load them both into DrJava.

4. Sec12PartII.java has a main()method that builds three binary trees composed of BinaryNode objects,
and tries to call a method named printTree() on each. At the moment, Sec12PartII.java cannot be
compiled because printTree() doesn’t exist.

Your job: Bring it into existence! printTree() is a recursive static void method that accepts two
arguments: A reference to the root node of a tree or subtree, and the depth of that node. Essentially,
printTree() is a modified inorder traversal. You need to figure out how to modify it to produce the four-
spaces-per-level, one-node-per-line output shown in the example above. Remember to think recursively!

The expected output of main() is provided in the documentation of Sec12PartII.java. When your
method is producing that output, you’re done with this part.

©✔ CHECKPOINT 2 Raise your hand. Your SL will come over and verify that your method is

working correctly.

(Continued . . . )
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PART III: Level-Order Traversal

Preorder, inorder, and postorder are closely related, naturally recursive tree traversal algorithms.

A fourth type of traversal, known a level-order traversal, is much easier to do iteratively, because

it depends on a queue instead of a stack. In this part you’ll write a method that outputs the

content of a binary tree, one level at a time.

1. To help you understand what a level-order traversal does, here’s our small example binary tree from Part
II, this time next to the level-order traversal’s output:
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Binary Tree Level-Order Traversal

Hopefully, this is pretty easy to follow. We are just outputting the content of each level of the tree, with
each level’s content being displayed left to right. You can also see that a level-order traversal doesn’t
help reconstruct the tree – we can’t tell from the output much more than that Y is the root and that
there are four nodes in the tree.

2. Here’s a pseudocode algorithm for creating a level-order traversal. As mentioned above, performing this
traversal requires a queue:

1 If the tree has no nodes, tell the user there is tree to traverse.

2 Otherwise:

3 Create a queue able to hold node references

4 Enqueue a reference to the root node

5 Loop so long as the queue is not empty:

6 Dequeue the front node reference from the queue

7 Output its data value

8 Enqueue its children (if any) into the queue, left child first

9 End loop

Walk through this algorithm by hand on our four-node sample tree, to make sure that you understand
how it works.

3. On the class web page is the file Sec12PartIII.java, which is a lightly modified version of Sec12PartII.java.
Load it into DrJava.

4. Add a static void method named levelOrder() to Sec12PartIII.java. It is to be an implementation
of the level-order algorithm shown above, subject to the following:

(a) levelOrder() accepts one argument, a reference to the root node of the tree.

(b) Use a JCF (Java Collections Framework) class as your queue representation. Which class is up to
you, except that the class must implement the Deque interface.

(c) There are several required output details:

i. If the tree has no nodes, display the message, “This tree has no nodes.”

ii. The traversal output is to be comma-separated; specifically, between each node value is to be a
comma and space.

iii. There must not be a trailing comma-space pair after the last value.

iv. The traversal’s output is to be enclosed in double quotes and followed by a space and the phrase
“has n characters.”, where n is the number of characters in the level-order traversal.
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For example, the expected output from the four-node example tree is:

"Y, R, U, A" has 10 characters.

Expected output is shown in the documentation of Sec12PartIII.java.

5. When the output of Sec12PartIII.java is matching the expected output, you’re ready to raise your
hand.

©✔ CHECKPOINT 3 Raise your hand. Your SL will come over and see how well you followed the

directions.

PART IV: Clean Up!

1. Log out of your computer; pick up your papers, writing implements, cell phones, trash, etc.; push in your
chair(s).

©✔ CHECKPOINT 4 Raise your hand. Your SL will come over and look for evidence of moist gum

under your desktop.

You’re free to go! But, if you have time, we recommend that you use it to work some more on the program-
ming assignment (individually, of course), if you’re not already done. (We really hope you were done before
Thanksgiving break!)
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