
CSc 127B — Introduction to Computer Science II
(McCann)

Expression Tree Creation Algorithm

Notes:

• You don’t need to memorize this for the final, but you should understand how it works.

• Reaching the end of the input is considered to be the lowest-precedence operator by this algorithm

• This algorithm employs two stacks, one for operators and one for references to expression subtrees (which
are really just operands that have yet to be evaluated).

• This algorithm doesn’t know how to handle parentheses or unary operators. It’s not difficult to add those
features, but this algorithm includes enough to build binary trees, which is the most important part.

1 initialize next_symbol to any legal operator or operand

2

3 while next_symbol is not end-of-the-input

4

5 read the next_symbol

6

7 if next_symbol is an operand

8

9 create an operand node

10 place next_symbol in the node

11 push a reference to the node on the operand stack

12

13 else if the operator stack is empty,

14 or top(operator stack) has lower precedence than next_symbol

15

16 push next_symbol onto the operator stack

17

18 else

19

20 while the operator stack is not empty AND top(operator stack) has

21 precedence higher than or equal to next_symbol

22

23 pop the top operator from the operator stack

24 create a new operator node

25 place the popped operator into the node

26

27 pop the top reference from the operand stack

28 store that reference into the node’s right child reference field

29

30 pop the top reference from the operand stack

31 store that reference into the node’s left child reference field

32

33 push a reference to the node on the operand stack

34

35 end while

36

37 push next_symbol onto the operator stack

38

39 end if

40

41 end while


