
CSc 127B — Introduction to Computer Science II
Fall 2015 (McCann)

http://www.cs.arizona.edu/classes/cs127b/fall15/

Program #6: A-Maizing!

Due Date: October 22 th, 2015, at 9:00 p.m. MST

Overview: Using a stack to help solve (that is, to find a path through) a 2D maze is a common programming
assignment. Less common is an assignment that asks students to use a stack to construct the maze. We’re
going to be less common. (As for the title, it’s corn field maze season . . . corn . . .maize . . . get it?)

To build a maze using a stack, we will select a location in a matrix, and ‘cut out’ a random path until we
reach a dead-end – a spot with no adjacent corn to cut. As we cut, we’ll push onto the stack the locations
that comprise the path we’ve followed. When we reach a dead-end, we’ll back up (by popping locations from
the stack) until we reach a location from which we can cut in a new direction. We continue this cutting and
retreating until we’re back at the starting location and there are no more directions to try. When that happens,
the maze is almost done. All that’s left to do is select the entrance and exit, and display the result.

Here’s a fairly detailed pseudocode outline of the algorithm:

allocate a 2*r+1 by 2*c+1 2D array representing an r by c 2D corn maze

clear a randomly-selected starting location within the r by c maze

push the starting location onto the stack

while the stack is not empty:

peek at the top of stack to learn current location

if there is at least one new direction in which to cut:

randomly select one of the available directions

cut from the current location to the next cell in that direction

push the location of that next cell on the stack

otherwise:

discard the location at the top of the stack

end if

end while

select and place the maze entrance and the maze exit

display maze

To keep everyone consistent, we want you to use a 2r + 1 by 2c+ 1 array of characters to represent an r by c

maze. Here are two representations of the same maze; the one on the left is a graphical representation that’s
3× 4 (r by c), and the other is the character representation that’s 7× 9 (2r + 1 by 2c+ 1):

012345678
0 #########
1 # # #
2 # # # # #
3 # # # #
4 # # ### #
5 # #
6 #########

0 1 2 3

0

1

2

This representation allows alternate (“every-other”) array locations to represent maze locations, with the in-
between locations available to represent the walls and corridors between maze locations. Think of the maze as
being created in a corn field. Initially, the maze builders start somewhere within the maze, pick a direction,
and cut down corn stalks in that direction until they clear the next location in that direction, along with the
path between the locations. In the example shown, the random starting location was (0,3). The random path
cut a spiral to (1,2), backed up to (0,1), and cut some more to (2,0) before backing up to the starting location.

(Continued ...)



Assignment: Write a complete, well-documented Java program that uses the algorithm described above to
create mazes with a number of rows (r, above) and a number of columns (c) entered by the user (have your
program read these values, in that order, from the command line).

You need two classes, Prog6 and MazeHolder. As the name suggests, MazeHolder represents the maze (using
the 2r + 1 by 2c + 1 character representation) and provides methods to do the low-level operations such as
‘cutting’ to the next cell in a given direction, placing the entrance, etc. Prog6 is in charge of running the maze
creation algorithm, and will use a MazeHolder object to hold the maze being created. All of the code in Prog6

thinks that the maze is r by c in size; it doesn’t care how MazeHolder views the maze.

Cutting the maze doesn’t provide the maze entrance and exit; we have to do that separately, after the maze
has been created. For this program, we want you to pick a random maze location from the left side of the
maze and remove the wall to its left to form the entrance. Do the same on the right side to form the exit.

You must create your own stack class with your own push, pop, and peek methods. Your stack of locations
may be represented by any of the classes of Java’s Collections Framework (JCF) that seem appropriate for the
job (Vector, ArrayList, etc.), except that you can’t reuse any existing stack methods (any named push, pop,
and/or peek), because we want you to create your own versions of those methods.

Data: Your program is to get the size of the maze (the numbers of rows and columns) from the command line.
If the user doesn’t give two acceptable integer values, print a suitable error message and halt the program. As
the content of the maze will be determined randomly, there is no other data to be gathered from the user.

Output: We’ll try something a little different on this assignment. If you are content to earn no higher than
90% on this assignment, you may output just the 2r + 1 by 2c + 1 character dump of the internal maze
representation. (This is the same output format shown above in the 7x9 representation you see in the figure
on the right — you don’t even have to display the numbers.) This will be very easy to do, hence the reduced
number of possible points.

For a shot at 100%, you will need to augment the basic program using the StdDraw class from the stdlib

graphics package (a.k.a. the stdlib.jar file we had you add to DrJava in Section #1) to produce a ‘thin-
walled’ graphic representation, like the 3x4 figure on the left of the above character representation. (It’s fairly
easy to produce a graphic version in which each character position is a square. That’s why we want to see the
fancier version (with thin walls) for full credit.)

Turn In: For this assignment, you may place all of your classes in the Prog6.java file, or you many arrange
them as one class per file; it’s your choice. However you arrange the code, be sure to use the ‘turnin’ utility
to electronically submit your Prog6.java and all other files to the cs127bsXp06 directory at any time before
the stated due date and time. Of course, you can turn them in late if you still have late days to use, or don’t
mind losing 20% per day if your late days are exhausted.

Hints, Reminders, and Other Requirements:

• Many of you have used the stdlib graphics package in CSc 127A. To help you refresh your memories, and
to help those who have never used it before, links to the documentation and to some example graphics
programs from my spring 127A class are on the class web page, below the link to this handout.

• We encourage you to get the maze algorithm working before you worry about the graphical representation
of the maze. The text version of the maze is easy to display, and you can use it to help debug your
algorithm before worrying about adding the graphics.

• We anticipate that the ‘external’ vs. ‘internal’ representation issues will be a significant source of confu-
sion for this assignment. Remember that your application (which has the maze creation logic that uses
the stack) thinks of the maze as having r rows and c columns, while the class maintaining the maze uses
a representation that has 2r+1 rows and 2c+1 columns. Make sure you are mentally in the appropriate
frame of mind when working in a particular area of your program.

• Helpful hint: Due to the coordinate system used by the stdlib graphics package, to avoid producing a
‘mirror-image’ graphical maze, you’ll need to think (column,row) instead of (row,column) when drawing
the lines that form the maze.

2


