Functions as Relations (1 / 2)

Consider: \(f(x) = x + 1, x \in \mathbb{Z} \)

Definition: Function
Example(s):

Function Terms (1 / 2)

Let \(f : X \rightarrow Y \) be a function. \(f(n) = p \ [(n, p) \in f] \).

- \(X \) is the \underline{domain} of \(f \)
- \(Y \) is the \underline{range} of \(f \)
- \(f \) \underline{maps} \(X \) to \(Y \)
- \(p \) is the \underline{image} of \(n \)
- \(n \) is the \underline{preimage} of \(p \)
- \(f \)'s \underline{range} is the set of all images of \(X \)'s elements

\textbf{Note:} A function's range need not equal its codomain.
Example(s):

\[g = \{ (a, b) \mid b = a/2 \}, \quad a \in \{0, 2, 4, 8\}, \]
\[b \in \{0, 1, 2, 3, 4, 5\} \]
Two Functions You Need To Know (1 / 4)

1. Floor \(\lfloor x \rfloor \)

Definition: Floor Function

Example(s):
Two Functions You Need To Know (2 / 4)

1. Floor \(\lfloor x \rfloor \) (cont.)

Using Floor for Rounding to the Nearest Integer

Two Functions You Need To Know (3 / 4)

2. Ceiling \(\lceil x \rceil \)

Definition: Ceiling Function

Example(s):
Two Functions You Need To Know (4 / 4)

2. Ceiling \(\lceil x \rceil \) (cont.)

Example(s):

Example: Type A UPC Code Check Digits

The check digit equals the image of this function:

\[
\begin{align*}
 s &= \text{Sum of digits in positions 1, 3, 5, 7, 9, & 11} \\
 t &= \text{Sum of digits in positions 2, 4, 6, 8, & 10} \\
 u &= 3s + t; \text{ the check digit is } (10 - u \% 10) \% 10.
\end{align*}
\]

Using the above sample:

\[
\begin{align*}
 s &= 39, \ t = 24, \text{ and } u = 3(39) + 24 = 141. \\
 \text{The check digit} &= (10 - 141 \% 10) \% 10 = 9.
\end{align*}
\]
Important Distinction: *Continuous* vs. *Discontinuous* Functions

Consider: \(f = \{(x, x + 1) \mid x \in \ldots \} \)

How should the graph of our long-distance calling plan function look?

\[
\text{Cost(length)} = \begin{cases}
50 \text{ cents} & \text{if length} \leq 10 \text{ minutes} \\
50 + 5 \cdot \lceil \text{length} - 10 \rceil \text{ cents} & \text{Otherwise}
\end{cases}
\]
Categories of Functions: Injective

Definition: Injective Functions (a.k.a. One-to-one)

Example(s):

Categories of Functions: Surjective

Definition: Surjective Functions (a.k.a. Onto)

Example(s):

Categories of Functions: Bijective

Definition: Bijective Functions (a.k.a. One-to-one Correspondence)

Example(s):

Odds and Ends

Definition: Functional Composition

Let \(f : Y \rightarrow Z \) and \(g : X \rightarrow Y \). The composition of \(f \) and \(g \), denoted \(f \circ g \), is the function \(h = f(g(x)) \), where \(h : X \rightarrow Z \).

Definition: Inverse Functions

Beyond Unary Functions

Definition: Binary Functions

Example(s):