Assignment 7
CSc 210 Fall 2017
Exercises Due October 16th, 8:00 pm MST
Programs Due October 21st, 8:00 pm MST (EXTENDED)

Introduction

In class, we have been discussing how to use classes such as ArrayLists and
HashMaps. For this assignment, you will be implementing a hash table class in Java.

NOTE: THIS ASSIGNMENT HAS TWO DUE DATES.

There are two parts (and two due dates!) to this assignment, exercises done via
CodeStepByStep and programs to be turned in via github classroom. The exercises will
be due Monday night while the actual programs will be due Thursday night.

You will turn in your code via github classroom. Here is the link to receive your
repository: https://classroom.github.com/a/1LROIJXW

For each Java program assigned, you will turn in a .java file for that program. We should
be able to run “javac file.java” and then “java file” on lectura and your program should
compile and run successfully.

Your Java programs should adhere to our style guidelines we will give to you. Here is the
link: https://www2.cs.arizona.edu/classes/cs210/fall17/StyleGuidelines.pdf

Specification Part I: CodeStepByStep (15 points)

Complete the following exercises on CodeStepByStep by Monday, October 16th, at 8:00
pm.

Java->recursion-->mystery1
Java->recursion-->recursionMystery1
Java->recursion-->recursionMystery1X
Java->recursion-->repeatString
Java->recursion-->mirrorSequence

Specification Part lla: Hash Tables (35 points)

A hash table is a data structure that offers very quick operations such as inserting data
and searching for data. You have used a form of a hash table when using the HashMap
class in Java. However, you will now create your own hash map implementation.

https://classroom.github.com/a/1LROlJXW
https://www2.cs.arizona.edu/classes/cs210/fall17/StyleGuidelines.pdf

First, you should read up on what a hash table is. Wikipedia is a good place to start:
https://en.wikipedia.org/wiki/Hash_table

At its heart a hash table (hash map) is an array together with a hash function that takes a
key and returns an index into that array. We usually call the elements in the array
buckets. A critical part of writing a good hash map implementation is writing a good (and
appropriate) hash function. It must spread out values evenly based on different input
values and needs to always produce the same value if the same element is given to it.

For this assignment, you will be tasked with
1. Implementing a HashMap Java class.
2. Writing a hash function for this hash map that hashes Strings.
3. Using this hash map implementation to solve a problem.

A perfect hash function is one that will produce a unique value for every unique key
given to it. Writing a perfect hash function is almost impossible. Therefore we do not
expect you to do this. Because your hash functions will not be perfect, they will probably
produce collisions! Collisions are when two different elements given to the hash function
produce the same input. That means some insertion values will have the same resulting
index in your hash table. To handle this, we will make every bucket in the array a linked
list. This is sometimes called chained hashing.

Below is an example hash table, hash function, and inserting three values into it. Notice
how we get a collision and insert the new value into the linked list at that index.

hash function h(x) = (2x) % 3

Insert 11, hashes to Insert 22, hashes to Insert 44, hashes to
index 1 index 2 index 1

0 0 0

[te[_le:[_ lee
2 2 —"@2 —"@

You will write a class called MyHashMap that maps Strings to doubles. It will implement
a hash map that uses chaining to handle collisions of elements. You will implement the
following public methods:

https://en.wikipedia.org/wiki/Hash_table

e A method void insert(k, v) that adds the double v to the table at the index
produced by hashing k, if it is not already there. If there is already an entry with
key k, then the value of the entry is replaced with v.

e A method void remove(k) that removes the double from the table at the index of
the string k, if it's there. If there is no element with key k, then the method returns
having done nothing. It does not report an error.

e A method double getValue(k) that returns the double from the table that is
associated with the key k if such an element exists. It should return 0.0 if no
value is stored in the table for key k. (Note: It would better to return something
that indicates the key wasn’t found, but since we’re returning a double we have
limited choices, so we’ll return 0.0)

e A method boolean contains(k) that returns true if there is a value in the table
associated with key k, and false otherwise.

A method int size() that returns the number of values currently in the table.

A method int capacity() that returns the number of buckets (size of the array)
being used by the structure. (Note size() returns how many things are currently
being stored and capacity returns how many buckets there are to store things.)

e A method void printTable() that prints out the elements of your table. The
purpose of this is so we can look at the output and determine how the values are
spread throughout your hash map. The output for this method is specified below.

e Two constructors. One with no parameters that creates a table with an internal
array of default size 100. One that takes an integer n as a parameter and creates
an array of size n to be used by the structure.

In addition you will need some private methods including the following. (Of course you
can include as many private methods as you think you need. You are also free to
choose whatever fields you think this class will need.)

e A method to compute the hash code of a string. (Note: You must come up with a
way to do this, feel free to reference lecture material.)
e A method to resize the table if necessary (see below).

If the number of elements in the hash table ever equals the size of the table, you should
double its size (what must you do about pre-existing values?).

Your printTable() method should have the following format:
1. For each entry in the underlying table, print out on a line the index number.
2. For each line, print out the linked list at that index with ‘ ->’ connecting the
nodes. If the linked list does not exist, print out null.
For the example table used earlier, we would have:
Index 0: null
Index 1: 11 -> 44
Index 2: 22

The output of this method does not need to be exact, we are just using it to look at the
spread of values throughout your hash table.

You must turn in at least on file, MyHashTable.java, but you are certainly encouraged to
turn in more (especially since you need a linked list). You are not allowed to use any
built in java classes within your HashTable class or linked list implementation other than
String, arrays, and possibly Double (though you don’t really need that last one). You
must implement the data structure yourself.

We will be creating a test program that will use your hash map to test if it is working
correctly. It is not required, but to test your code is working you can re-write the program
HappyScore.java. However, you will now use your HashMap implementation instead of
Java’s. Refer to the previous spec to refresh on what this program must do.

Specification Part llb: QuickSort (25 points)

Most of you have probably heard of (and maybe even implemented!) an algorithm called
quicksort. Quicksort (sometimes called partition-exchange sort) is an efficient sorting
algorithm, serving as a systematic method for placing the elements of an array in order.
Developed by Tony Hoare in 1959 and published in 1961, it is still a commonly used
algorithm for sorting. When implemented well, it can be about two or three times faster
than its main competitors, merge sort and heapsort. Quicksort can operate in-place on
an array, requiring small additional amounts of memory to perform the sorting.
Mathematical analysis of quicksort shows that, on average, the algorithm takes O(n log
n) comparisons to sort n items. In the worst case, it makes O(n?) comparisons, though
this behavior is rare.

Quicksort is a divide and conquer algorithm. Quicksort first divides a large array into two
smaller sub-arrays: the low elements and the high elements. Quicksort can then
recursively sort the sub-arrays.

The steps are:

1. Pick an element, called a pivot, from the array.

2. Partitioning: reorder the array so that all elements with values less than
the pivot come before the pivot, while all elements with values greater
than the pivot come after it (equal values can go either way). After this
partitioning, the pivot is in its final position. This is called the partition
operation.

3. Recursively apply the above steps to the sub-array of elements with
smaller values and separately to the sub-array of elements with greater
values.

The base case of the recursion is arrays of size zero or one, which are in order by
definition, so they never need to be sorted.

You are to implement a java class called QuickSort.java. It should implement a static
method:

public static int[] sort(int[] toSort);

Which will be given an integer array. You will sort this array using quicksort and return
the newly sorted array from the method. Note the array you are returning is the one that
was passed to you. In other words, don’t create a new array. Instead sort the array sent
to you as a parameter and then return that array.

NOTE ONE OF THE BENEFITS OF THE QUICK SORT ALGORITHM IS THAT IT USES
CONSTANT SPACE. YOUR CODE FOR SORT SHOULD NOT EVERY CREATE A
NEW ARRAY. INSTEAD YOU NEED TO SORT THE EXISTING ARRAY IN PLACE.

Hints:

1. Since you're sorting the array in place, you will probably want to create a helper
function that does the actual recursion so it can include start and end indexes.

2. It doesn’'t matter which value you pick for the pivot. It is common to pick the first
element in the array.

3. To do the partition operation you can run an index from left to right to left as long
as the values are not larger than the pivot and another from right to left while the
values are not smaller than the pivot. If both these indexes stop before they cross
each other, exchange their values and repeat. When the indexes cross each
other you know the right half has values larger or equal to the pivot and the left
has values less than or equal to the pivot. Exchange the value of the pivot so it
appears in the middle.

4. Lastly, it IS cheating to look up a Java implementation of quicksort, it is NOT
cheating to look up more information(in pseudo code) on quicksort if you are
having trouble understanding it.

You should also write a main function that reads input from standard in into an array and
sorts it, and then prints it out You will first read in an integer n that defines how many
integers you will read in. You will then read in that many integers into an array. This
main function should check for errors in input: These would include no size or a bad size
entered (Note, a size of 0 will not be counted as an error. If a size of 0 is entered then
the array is empty). Also if the size n is not followed by at least n integers, you should
print an error message. You do not need to check that the input doesn’t have more items
than the n integers. Once you’ve read the n integers go on to the rest of the program.
Once you've read the array, call YOUR sort method to sort it, and then print out the
elements of the sorted array, one per line.

Turn in one file called QuickSort.java with the content described above.

Miscellaneous

In order to receive a grade, your repo must only contain your source java files in the
root directory of your repo.

This assignment will be submitted through github classroom. Make sure all of your code
you would like to submit is in your repository when the due date arrives.

Note: Your output must match what is defined here in the spec. We will give you a small
selection of test cases so you can make sure you have the right format. Do not print
extraneous output, you may lose a lot of points (This includes prompts when reading in
input!). These test cases can be found in your repo.

Remember, do not cheat! Refer to the syllabus and first lecture for more information.

