Assignment 9
CSc 210 Fall 2017
Programs Due November 2nd, 8:00 pm MST

Introduction

We have been discussing what inheritance is, what its purpose is, and how it is used to
better the design of systems. It allows us to abstract concepts within our systems. For
this assignment, you will apply your knowledge gained from lecture to actual programs.

You will turn in your code via github classroom. Here is the link to receive your
repository: https://classroom.qgithub.com/a/wFtY-ydk

For each Java program assigned, you will turn in a .java file for that program. We should
be able to run “javac file.java” and then “java file” on lectura and your program should
compile and run successfully.

Your Java programs should adhere to our style guidelines we will give to you. Here is the
link: https://www2.cs.arizona.edu/classes/cs210/fall17/StyleGuidelines.pdf

Inheritance Shapes

For this project, you will create an inheritance hierarchy representing some shapes.
Additionally, you will create a simple user interface to interact with your program and
print shapes out to a screen.

First, you will create a base shape class. This base class should define common
characteristics between shapes. This may include values such as fill (what character is
inside of a shape), size, position of shape on screen, or anything shapes might share.
You should also define common methods for shapes in your base class. Among the
methods you should define in your base class are ones for

1. Drawing a shape.

2. Printing out information about the shape.

3. Getters and setters for shared variables.

4. Growing or shrinking a shape but a factor passed in as a double.

You should define several classes which inherit from the base shape class. You should
have a rectangle class, a triangle class, a parallelogram class, and a hourglass class.
Details of these classes are defined later.


https://classroom.github.com/a/wFtY-ydk
https://www2.cs.arizona.edu/classes/cs210/fall17/StyleGuidelines.pdf

You should also create a REPL (Read-Eval-Print Loop) to interact with your shape
objects. Essentially, you will have a loop that reads input until there is no more left to be
read. You will read commands in and respond to them. This REPL will read input in
from standard in. You will read in commands in the following format:

e A define command will create a shape and assign it to the name given. You will
need a way to store and recall the shapes defined. Each shape will have a
unique “initializing function” defined later. You will find the DEFINE keyword, the
name of the shape, the shape type in all caps, then the parameters for creating
that shape which are given later. Note you can have redefinitions of shape
names. The command will look like the following

o DEFINE shape_name SHAPE_TYPE ...parameters...

e A draw command to print the shape to the screen. It will print out an ascii version
of the shape inside of a “screen”. This screen is a window that is 32 characters
tall and 96 characters wide. This screen has borders that are the asterisk (*)
character. For all x,y positions on the screen, y goes down and x goes to the
right. The “pixels” in the screen will be 0 indexed. The screen size 32x96
includes the border, however you can not overwrite the pixels of the border. The
size of a shape will define how you print it out. If a shape goes outside of the
screen, print out the message “Shape exceeds bounds of screen” to standard
output. You still must print the parts of the shape that are inbounds. The draw
command will look like

o DRAW shape _name

e A transform command will change the size of a shape. It will take in the name of
a shape to transform and a either DOUBLE to double the shapes size, or HALF
to halve it. The specifics of what doubling and halving mean are defined below.

o DOUBLE shape _name
o HALF shape _name

e A dump command will print out information about a shape. It will print out things
like area, fill, amount of times it has been printed, and more based on what type
of shape it is. The exact information to print out will be given later. The
command will look like the following

o DUMP shape name

e |[f you read a command that does not start with one of the keywords given above,
print out “Invalid command.” to standard output and read the next command.
Otherwise, if the first keyword matches, assume the command has correct syntax
and all inputs are valid.

Here you will find some implementation details of shapes:



e Rectangle

o

o

You should maintain a width and a height for a rectangle.

The format for the initializing function of a rectangle is “RECTANGLE
int_width int_height “char _fill” int_xpos int_ypos” where each parameter is
separated by space. Note the quotes around the fill char. To double a
rectangle, multiply the width and height by two. To halve it, divide the
width and height by two.

The dump message for a rectangle should be in the following format
‘RECTANGLE (name:name) (x:xpos) (y:ypos) (width:width)
(height:height) (area:area) (fill:fillchar) (draw_amount:.draw_amount)”
where the italicised values are the actual values associated with the
shape. This should all be printed on one line.

e Triangle

o

You will maintain one parameter for height (height is really the length of
each side in # of characters).

You should maintain a parameter to know if you should print the point
facing upwards or downwards. If the parameter is down, you know to print
the triangle with a point facing downwards. If it is up, you know to print
the triangle with a point facing upward.

The format for the initializing function of a triangle is “TRIANGLE
int_height direction “char_fill” int_xpos int_ypos” where each parameter is
separated by space. Note the quotes around the fill char. The direction
parameter is either UP or DOWN, dictating the direction for the triangle to
point.

To double the size of a triangle, just double its height. To halve it, divide
its height by two.

The dump message for a triangle should be in the following format
“TRIANGLE (name:name) (x: xpos) (y:ypos) (height:height) (area:area)
(direction:dir) (fill:fillchar) (draw_amount:draw_amount)” where the
italicised values are the actual values associated with the shape. The dir
value should be UP or DOWN. This should all be printed on one line.

e Parallelogram

o

This is essentially a rectangle, but the left and right edges of it are shifted
to lean to the right. Think about how this relates to the rectangle class.
What characteristics does it share? What needs to change?

Each layer of your parallelogram will be shifted to the right some amount.
For instance, a 3x3 parallelogram would have the top layer shifted two
characters right, the middle layer would be shifted one character right,
and the bottom layer would not be shifted. See the example output for an
example. The format for the initializing function of a parallelogram is



“‘“PARALLELOGRAM int_width int_height “char _fill” int_xpos int_ypos”
where each parameter is separated by space. Note the quotes around the
fill char. To double a parallelogram, multiply the width and height by two.
To halve it, divide the width and height by two.

o The dump message for a parallelogram should be in the following format
“‘“PARALLELOGRAM (name:name) (x:xpos) (y:ypos) (width:width)
(height:height) (area:area) (fill:fillchar) (draw_amount:.draw_amount)”
where the italicised values are the actual values associated with the
shape. This should all be printed on one line.

e Hourglass

o This shape is essentially two triangle, one on top of another (How could
you use this fact to simplify the hourglass class?).

o The format for the initializing function of a hourglass is “HOURGLASS
int_height “char _fill” int_xpos int_ypos” where each parameter is
separated by space. Note the quotes around the fill char.

o To double a hourglass, multiply the height by two. To halve it, divide the
height by two.

o If an hourglass has an odd height, print a triangle on top that has height
ceil(height/2) and a triangle on bottom that has floor(height/2).

o The dump message for a hourglass should be in the following format
‘HOURGLASS (name:name) (x:xpos) (y:ypos) (height:height) (area:area)
(fill:fillchar) (draw_amount:draw_amount)” where the italicised values are
the actual values associated with the shape. This should all be printed on
one line.

A few additional points

e Allinitializing functions for shapes will take in an x and y position on our screen.
This is the top left corner of the bounding box of the shape.

e When halving sizes, always take the floor of the result from the division for the
new size value.

Looking at the provided input and output will be a good place to start and understand
what this program is doing.

You are required to turn in at least the following files: ShapeREPL .java (contains the
code for your REPL), Shape.java, Rectangle.java, Triangle.java, Parallelogram.java, and

Hourglass.java.

Miscellaneous



In order to receive a grade, your repo must only contain your source java files in the
root directory of your repo.

This assignment will be submitted through github classroom. Make sure all of your code
you would like to submit is in your repository when the due date arrives.

Note: Your output must match what is defined here in the spec. We will give you a small
selection of test cases so you can make sure you have the right format. Do not print
extraneous output, you may lose a lot of points (This includes prompts when reading in
input!). These test cases can be found in your repo.

Remember, do not cheat! Refer to the syllabus and first lecture for more information.



