
Arrays:

• An array is a data structure that stores a sequence of values of the same type.

• The data type can be any of Java’s primitive types:

• int, short, byte, long, float, double, boolean, char

• The data type can also be any class:

• String, SolidBoxes, etc.

• Each variable in the array is an element.

• An index specifies the position of each element in the array.

• Useful for many applications:

• Collecting statistics.

• Representing the state of a game.

• Etc.

1

Java Arrays vs Python Lists:

• The closest structure to an array in Python is the List, but there are many

differences.

• An array has a fixed size but the size of a Python List can change.

• All the elements of an array must be the same type, but a Python List can have

elements of many types.

• You may insert into the middle of a Python List, but not into an array

• You may concatenate a Python List, but not an array

• Why would we even have something like an array when a list is so much more

flexible?

• Answer: Nothing is free. Arrays are more efficient than lists.

2

Arrays

• Arrays are one of the oldest and most basic data structures in computer science.

• Many implementations of arrays

use a block of contiguous memory

• It is the most efficient way to store a collection of

a known number of items.

• It also allows random access of items. (Through an index)

• In Java, arrays are objects so they contain more information, but the data is stored in

consecutive memory.

3

3432

3

54

-434

324

234

4

80948

Block of integers

in memory

Declaring and Instantiating Arrays:

• Arrays are objects.

• Creating an array requires two steps:

1. Declaring the reference to the array

2. Instantiating the array.

• To declare a reference to the array:

datatype [] arrayName;

• To instantiate an array:

arrayName = new datatype[size];

• size is an int and is the number of elements that will be in the array.

4

int [] zapNumbers;

zapNumbers = new int [173];

float [] grades;
grades = new float[22] ;

String [] names;
names = new String[20];

• Examples:

• Declaring and instantiating arrays of primitive types:

double [] dailyTemps; // elements are doubles

dailyTemps = new double[365]; // 365 elements

boolean [] answers; // elements are booleans: true, false

answers = new boolean[20]; // 20 elements

int [] cs127A, cs252; // two arrays, each containing integers

cs127A = new int[310]; // 310 elements for cs127A

cs252 = new int[108]; // 108 elements for cs252

5

• Declaring and instantiating arrays of objects:

String [] cdTracks; // each element is a String

cdTracks = new String[15]; // 15 elements to hold song names

BaseballStats[] myTeam; // BaseballStats is a user defined class

myTeam = new BaseballStats[25]; // 25 players on my team

6

• The declaration and instantiation can be done in the same step.

double [] dailyTemps = new double[365];

... can now use the dailyTemps array in my code ...

dailyTemps = new double[173];

... can now use the new size of dailyTemps array in my code ...

int numberOfQestions = 30;

boolean [] answers = new boolean[numberOfQuestions];

int [] cs127 = new int[240], cs252 = new int[75];

String [] studentNames = new String[42];

int numPlayers = 25;

int numTeams = 10;

BaseballStats [] myTeam = new BaseballStats[numPlayers * numTeams];

7

• When an array is instantiated, the elements are assigned default values as follows:

8

Array data type Default value

byte, short, int, long 0

float, double 0

char nul character

boolean false

Any object reference (for example, a
String)

null

• The instantiation of an array creates an area of memory that holds the elements of
the array.

• This area of memory has one name, the name of the array.

double [] zapNums = new double[5];

int numberOfQuestions = 4;

boolean [] answers = new boolean[numberOfQuestions];

9

Assigning initial values to arrays:

• Arrays can be instantiated by specifying a list of initial values.

• Syntax:

datatype [] arrayName = { value0, value1, …};

• where valueN is an expression evaluating to the data type of the array and is assigned

to element at index N.

10

• Examples:

• Create an array of integers. The array will have 10 elements, since there are 10 values

supplied:

int magic = 13;

int [] oddNumbers = {1, 3, 5, 7, 9, magic, magic + 2, 17, 19, 21};

System.out.println(oddNumbers[7]); // prints 17

System.out.println(oddNumbers[4]); // prints 9

System.out.println(oddNumbers[magic - 4]); // prints 21

System.out.println(oddNumbers[5] - magic); // prints 0

• Notes:

• The new keyword is not used.

• The []’s are empty; do not put in the size of the array.

• The Java compiler will count the number of elements inside the { }’s and use that as the size

of the array.

11

• Another Example:

• Create an array of String’s. The array will have 3 elements, since there are 3 values

supplied:

String middleName = "Jane";

String [] myNames = { "Mary", middleName, "Watson" };

• You can use this technique only when the array is first declared.

• For example, the first line below is correct. The second is not!

double[] dailyMiles = { 175.3, 278.9, 0.0, 0.0, 0.0}; // correct

dailyMiles = { 170.3, 278.9, 283.2, 158.0, 433.3}; // WRONG!!

• The compiler will complain about the second line:

zap.java:17: illegal start of expression

dailyMiles = { 170.3, 278.9, 283.2, 158.0, 433.3};

12

• However, you can use Anonymous Arrays to assign values:

double[] dailyMiles;

dailyMiles = new double {170.3, 278.9, 283.2, 158.0, 433.3};

• The code above works. The last statement is shorthand for:

double[] anonymous = {170.3, 278.9, 283.2, 158.0, 433.3};

dailyMiles = anonymous;

13

Accessing Array Elements:

• To access an element of an array, use:

arrayName[exp]

• where exp is evaluates to an int that is >= 0.

• exp is the element’s index; it’s position within the array.

• The index of the first element in an array is 0.

• Each array has a read-only integer instance variable named length.

• length holds the number of elements in the array.

• Examples:

int [] numbers = { 34, 42, 76, 98, -109, 10 };

System.out.println(numbers[0] + " is the element at position 0");

System.out.println("The array numbers has " + numbers.length +
" elements");

• Notice the difference between the string method length and the
array instance variable length

String myName = new String("Peter Parker");

System.out.println("My name has " + myName.length() + "characters.");

14

• To access other elements, use either an int, or an expression that evaluates to an int:

int [] numbers = { 34, 42, 76, 98, -109, 10 };

System.out.println("The element at position 3 is " + numbers[3]);

int sample = 1;

System.out.println("numbers[" + sample + "] is " + numbers[sample]);

System.out.println("numbers[" + sample*2 + "] is " +

numbers[sample * 2]);

15

• How to access the last element in the array?

• The elements in the array are numbered starting at 0.

• The length instance variable will tell us the number of elements.

int lastElement;

lastElement = numbers.length - 1;

System.out.println("last element of numbers is " +

numbers[lastElement]);

16

• Trying to access an element at a position < 0, or at a position >= arrayName.length

will generate an error:

System.out.println("Element at location -1 is " + numbers[-1]);

• Gives the following error at runtime:

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: -1

at Sample.main(Sample.java:16)

• Trying to execute:

System.out.println("Element at location length is " +

numbers[numbers.length]);

• Gives the following error at runtime:

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 6

at Sample.main(Sample.java:18)

17

Array Operations:

• Since the elements are indexed starting at 0 and going to arrayName.length - 1,
we can print all the elements of an array using a for loop:

public class PrintArray {
public static void main(String[] args) {

double [] miles = {19.5, 16.7, 22.1, 4.5, 7.5, 10.5, 16.0, 42.0};
int i;

for (i = 0; i < miles.length; i++)
System.out.println("Element " + i + " is " + miles[i]);

} // end of method main

} // end of class PrintArray

• Gives the following output:
Element 0 is 19.5
Element 1 is 16.7
Element 2 is 22.1
Element 3 is 4.5
Element 4 is 7.5
Element 5 is 10.5
Element 6 is 16.0

Element 7 is 42.0

18

Reading data into an array:

• We can read data from the user to put into an array:

import java.util.Scanner;
public class ReadDoubles {

public static void main(String[] args) {
Scanner inputScan = new Scanner(System.in);
int i;

double[] numbers = new double[10];

for (i = 0; i < numbers.length; i++) {
System.out.print("Enter a number: ");
numbers[i] = inputScan.nextDouble();

}

System.out.println();

for (i = 0; i < numbers.length; i++) {
System.out.print("numbers[" + i + "] is ");
System.out.println(numbers[i]);

}
} // end of method main

} // end of class ReadDoubles
19

Summing elements of an array:

• Once we have the values in an array, we can use loop(s) to perform calculations. For
example, we can extend the previous example to find the average of the numbers

the user enters:
double sum;

double average;

double [] numbers = new double[<some value goes here>];

... read in the numbers from the user ...

sum = 0.0;

for (i = 0; i < numbers.length; i++) {

sum = sum + numbers[i];

}

if (numbers.length != 0)

average = sum / numbers.length;

else

average = 0.0;

System.out.println("average is " + average);

20

Copying arrays:

• Suppose we want to copy the elements of one array to another array. We could try

this code:

double [] numbersBackup = new double [10];

numbersBackup = numbers;

numbers[3] = 927.37;

System.out.println(numbersBackup[3]);

• This code will compile, and it will run without

producing error messages.

21

• We get two variables that both refer to the same

array.

• Two aliases for the same memory location.

• We wanted two arrays with the same contents.

• But, it is wrong!!!!

Copying arrays (continued):

• Suppose we want to copy the elements of one array to another array. We could try this
code:

double [] numbersBackup = new double [numbers.length];

for (int i = 0; i < numbers.length; i++)

numbersBackup[i] = numbers[i];

• This code makes a second array and puts a copy of each element from the first array into the
second.

22

Copying arrays (continued):

• Now we can change the contents of one array without changing the other:

for (int i = 5; i < numbers.length; i++)

numbers[i] = numbers[i] + 2;

23

Change
starts here

These have
not changed

Comparing Arrays for Equality:

if (numbers == numbersBackup) // does NOT work

• To compare whether the elements of two arrays are equal:

1. Determine if both arrays have the same length.

2. Compare each element in the first array with the corresponding element in the second

array.

• To do this, use a flag variable and a for loop:

• A flag variable:

• A boolean.

• Two ways to use it:

• Set the flag to true, then test to determine if the flag should be false. OR

• Set the flag to false, then test to determine if the flag should be true.

• For this example, we will set the flag to true and then test to determine if it should be

false.

24

public class CompareArrays {

public static void main(String[] args) {

int [] alpha = {0, 1, 2, 43, 48, 59, 60, 70, 88, 90, 1000};

int [] bravo = {0, 1, 2, 43, 48, 59, 60, 70, 88, 90, 1000};

boolean equalFlag = true; // Set the flag to true

// Test if the flag should be false

if (alpha.length != bravo.length)

equalFlag = false;

else

for (int i = 0; i < alpha.length; i++) {

if (alpha[i] != bravo[i])

equalFlag = false;

break;

}

// Print the result

if (equalFlag)

System.out.println("alpha and bravo are equal");

else

System.out.println("alpha and bravo are NOT equal");

} // end of method main

} // end of class CompareArrays

25

Finding Maximum/Minimum Values:

• General idea:

• Use a loop to examine each value in the array.

• Compare each value with the largest value found so far.

• But, what about the first element in the array? What is it compared to?

• Key point: Assume the first value is the largest.

• Then, the loop tests that assumption, changing the largest as needed.

26

import java.util.Scanner;

public class LargestNumber {

public static void main(String[] args) {

Scanner inputScan = new Scanner(System.in);

int [] zap = new int [10];

int i;

int largest;

for (i = 0; i < zap.length; i++) {

System.out.print("Enter an integer: ");

zap[i] = inputScan.nextInt();

}

largest = zap[0]; // zap[0] is the largest to start

// test other values in zap to see if any are larger

for (i = 1; i < zap.length; i++)

if (zap[i] > largest)

largest = zap[i];

System.out.println("The largest integer is " + largest);

} // end of method main

} // end of class LargestNumber

27

What would you change
to find the smallest
instead of the largest?

• What if the array is an array of String’s?

public class CompareStrings {

public static void main(String [] args) {

String [] words = {"hello", "c3p0", "out of here",
"outward", "inward", "onward", "r2d2",
"water", "Zombie", "wombat"};

int i;

String largest;

largest = words[0];

for (i = 1; i < words.length; i++)

if (words[i].compareTo(largest) > 0)

largest = words[i];

System.out.println("largest word is " + largest);

} // end of method main

} // end of class CompareStrings

28

The compareTo method returns a negative
number if words[i] < largest, 0 if they are
equal (having the same value), and a positive
number if words[i] > largest

The Arrays Class:

• The java.util.Arrays class has many useful methods for dealing with arrays, including ones
for doing copying and comparing.

• You will want to import java.util.Arrays to use these methods.

• Here is an example of how we could have copied the array in the prior slide.

double [] numbersBackup;

numbersBackup = Arrays.copyOf(numbers, number.length);

• The general syntax for copyOf is:

Arrays.copyOf(<source array>, <length>)

• This creates a new array object that has size <length> and whose first element values are
copies of those from the source array.

• If <length> is longer than the length of the source array, the extra elements are given the default
values.

• If <length> is shorter than the length of the source array, only the first elements of that array are
copied.

29

The Arrays Class (cont):

• The copyOf method is often used to resize an array. This is alright if it is done very
infrequently. If you need to resize an array often, you are better of using an ArrayList
object.

• Another useful method in the Arrays class is the equals method.

• Works for arrays of primitive types (int, long, short, char, byte, boolen, float, or double)

boolean Arrays.equals(a, b)

• Returns true if a and b have the same length and the elements of in corresponding
indexes match and false otherwise.

30

import java.util.*;

public class CompareArrays2 {

public static void main(String[] args) {

int [] alpha = {0, 1, 2, 43, 48, 59, 60, 70, 88, 90, 1000};

int [] bravo = {0, 1, 2, 43, 48, 59, 60, 70, 88, 90, 1000};

if (Arrays.equals(alpha, bravo))

System.out.println("alpha and bravo are equal");

else

System.out.println("alpha and bravo are NOT equal");

} // end of method main

} // end of class CompareArrays

The Arrays Class (cont):

• Yet another useful method is sort.

• The sort method works for arrays of primitive types except boolean.

void sort(a)

• The sort method sorts the given array using the QuickSort algorithm.

• Notice this method does NOT create a new object, but alters the array given to it as a
parameter.

31

import java.util.*;

public class SortArray {

public static void main(String[] args) {

int [] alpha = {0, 42, 2, 4, 48, 72, 60, 1000, 90, 88, 70};

Arrays.sort(alpha); //

for (int i = 0; i < alpha.length; ++i)

System.out.print(alpha[i] + " ");

System.out.println();

}

}

Command-Line Parameters:

• A java program receives its command-line arguments in an array.

public static void main (String[] args) {

• Unlike in Python, the first string in the array (index 0) does NOT contain the name of the
program, but the first argument sent to it.

for (int i = 0; i < args.length; ++i)
System.out.println(args[i]);

• Suppose main contains the above code and that the program is run by typing:

java MyClass John Paul George Ringo

• Then the output will be:

John
Paul
George
Ringo

32

The "for each" Loop:

• There is a variation on the for loop that is very similar to that in Python.

for (variable : collection) statement

• Like in all loops, the statement may actually be a block. The collection may be an array.
The variable must be the type of the elements in the collection.

• For example, the loop to print out the arguments shown on the previous slide:

for (int i = 0; i < args.length; ++i)
System.out.println(args[i];

• Can be rewritten as:

for (String str : args)
System.out.println(str);

33

